Contact during exam:
Anne Kværnø (92663824)

EXAM IN NUMERICAL MATHEMATICS (TMA4215)

Monday December 8, 2008
Time: 09:00-13:00 Final Grade January 8.

Permitted aids (code B):
All printed and hand written aids.
Approved calculator

Problem 1 Find the polynomial of degree as low as possible, interpolating the points

$$
\begin{array}{c|cccc}
x & -1.0 & 0.0 & 0.5 & 1.0 \\
\hline y & 0.25 & -0.5 & 0.25 & 2.75
\end{array}
$$

Problem 2 Find an approximation to the integral

$$
\begin{equation*}
\int_{0}^{1} \sqrt{x} \sin (x) d x \tag{1}
\end{equation*}
$$

using Romberg integration. Find R_{33}.

We will now study the accuracy of Romberg integration. Let R be the Romberg table, I the exact value of the integral, so that $E=I-R$ is a table of the errors in each element of the Romberg table, that is $E_{k j}=I-R_{k j}$. Applied to the given integral, we get the following table of errors (in this table we have included values up to E_{55}).
$5.6514 \mathrm{e}-02$
$1.5648 \mathrm{e}-02 \quad 2.0266 \mathrm{e}-03$
$4.2178 \mathrm{e}-03 \quad 4.0765 \mathrm{e}-04$
2.9972e-04
$1.1111 \mathrm{e}-03 \quad 7.5583 \mathrm{e}-05$
5.3445e-05 4.9536e-05
$2.8799 \mathrm{e}-04$
1.3602e-05
9.4703e-06
8.7722e-06
$8.6124 e-06$

Doing a second experiment, by applying Romberg integration to the integral $\int_{0}^{1} \sin (x) d x$ will give the following error table:

$3.8962 \mathrm{e}-02$				
$9.6172 \mathrm{e}-03$	$1.6450 \mathrm{e}-04$			
$2.3968 \mathrm{e}-03$	$1.0051 \mathrm{e}-05$	$2.4553 \mathrm{e}-07$		
$5.9872 \mathrm{e}-04$	$6.2467 \mathrm{e}-07$	$3.7420 \mathrm{e}-09$	$9.5981 \mathrm{e}-11$	
$1.4965 \mathrm{e}-04$	$3.8987 \mathrm{e}-08$	$5.8109 \mathrm{e}-11$	$3.6549 \mathrm{e}-13$	$9.5479 \mathrm{e}-15$

Comment on the result.

Problem 3

a) Find the first 3 polynomials orthogonal to the inner product

$$
\langle f, g\rangle_{w}=\int_{0}^{1} \frac{1}{\sqrt{x}} f(x) g(x) d x
$$

b) Find a quadrature formula on the form

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} f(x) d x \approx A_{1} f\left(x_{1}\right)+A_{2} f\left(x_{2}\right)
$$

with an optimal degree of precision. Use this formula to find an approximation to the integral (1).

Problem 4 Modified Euler is a 2nd order Runge-Kutta method, described by the Butchertableaux

$$
\begin{array}{c|cc}
0 & & \tag{2}\\
1 / 2 & 1 / 2 & \\
\hline & 0 & 1
\end{array} .
$$

We will use this method to solve the differential equation

$$
\begin{equation*}
y^{\prime \prime}=y^{\prime} \cdot y, \quad y(0)=1, \quad y^{\prime}(0)=0.5 \tag{3}
\end{equation*}
$$

a) Reformulate (3) to a system of first order differential equations. Do one step with the method to find approximations to $y(0.1)$ and $y^{\prime}(0.1)$.
b) Consider a Runge-Kutta method in 3 stages, given by

Let $c_{3}=1$. What should the remaining parameters be for the method to be of order 3 ?

The method (2) together with the 3th order method from point b) form an embedded RungeKutta pair, which can be used to construct an adaptive algorithm for solving ordinary differential equations. Let us now use this pair to solve (3) with a tolerance of 10^{-3}.
c) From a) we have the solutions $y_{1} \approx y(0.1)$ and $y_{1}^{\prime} \approx y^{\prime}(0.1)$.

- Give an estimate for the error (use the max-norm).
- Can the solution be accepted, or should it be rejected.
- Compute the next stepsize.

Use error pr. step (EPS) and a pessimist factor $P=0.75$ for the stepsize control.
Hint: The order conditions for Runge-Kutta methods are given by

order	condition		
1	$\sum b_{i}=1$		
2	$\sum b_{i} c_{i}=1 / 2$		
3	$\sum b_{i} c_{i}^{2}=1 / 3$		
	$\sum b_{i} a_{i j} c_{j}=1 / 6$	\quad	
:---			

Problem 5 Consider the following electrical circuit.

We would like to find the currents $I_{i}, i=1, \ldots, 4$ when the resistances $R_{i}, i=1, \ldots, 9$ and the voltage sources $V_{i}, i=1, \ldots, 4$ are given. Kirshoffs laws together with Ohm's law gives the following system of equations:

$$
\begin{aligned}
R_{1} I_{1}+R_{5}\left(I_{1}-I_{2}\right)+R_{6}\left(I_{1}-I_{3}\right) & =V_{1} \\
R_{2} I_{2}+R_{5}\left(I_{2}-I_{1}\right)+R_{7}\left(I_{2}-I_{3}\right)+R_{8}\left(I_{2}-I_{4}\right) & =V_{2} \\
R_{3} I_{3}+R_{6}\left(I_{3}-I_{1}\right)+R_{7}\left(I_{3}-I_{2}\right)+R_{9}\left(I_{3}-I_{4}\right) & =V_{3} \\
R_{4} I_{4}+R_{8}\left(I_{4}-I_{2}\right)+R_{9}\left(I_{4}-I_{3}\right) & =V_{4}
\end{aligned}
$$

You can assume that $R_{i}>0, i=1, \ldots, 4$, while $R_{i} \geq 0$ for $i=5, \ldots, 9$.
a) Explain why this system of equations always will have a solution, and why Jacobi or Gauss-Seidel iterations always will converge to the solution, independent of the choice of starting values.
b) Let $R_{1}=R_{2}=10, R_{3}=R_{4}=25, R_{i}=15, i=5, \ldots, 9, V_{1}=V_{4}=6, V_{2}=V_{3}=0$.

Do one Gauss-Seidel iteration on the system. Use $I_{i}^{(0)}=V_{i} / R_{i}, i=1, \ldots, 4$ as starting values.

