1 Solution of systems of nonlinear equations

Given a system of nonlinear equations
F(z) =0, F:R™ —R™ (1)

for which we assume that there is (at least) one solution x*. The idea is to
rewrite this system into the form

r = G(x), G:R™ — R™. (2)

The solution z* of (1) should satisfy * = G(z*), and is thus called a fized point
of G. The iteration schemes becomes: given an initial guess (%), the fized point
iterations becomes

kD) G(x(k)), k=1,2,.... (3)

The following questions arise:
(i) How to find a suitable function G?

(ii) Under what conditions will the sequence z(*) converge to the fixed point
x*?

(iii) How quickly will the sequence z(*) converge?
Point (ii) can be answered by Banach fixed point theorem:

Theorem 1.1. Let D C R™ be a conver' and closed® set. If

G(D)C D (4a)
and

|G(y) — GW)|| < L|ly —v|,  withL <1 forall y,ve D,  (4b)

then G has a unique fized point in D and the fized point iterations (3) converges
for all 29 € D. Further,

l2®) — || < 2D — 2. (4c)

1-L

Proof. The proof is based on the Cauchy Convergence theorem, saying that a
sequence {:v(k)}zozo in R™ converges to some x* if and only if for every € > 0
there is an N such that

|z® —2®|| <& forall Ik>N. (5)

Assumption (4a) ensures zF) € D as long as () € D. From (3) and (4b) we
get:

lz*+D — W) = |G(2®) - G* V)| < Llja® - 2®V| < LF|a) - 2.

'D is convex if Oy + (1 — @)v € D for all y,v € D and 0 € [0, 1].
2A set D € R™ is closed if it contains all its limit points. A limit point of D is ¢ € R™
such that for all neighborhoods J; of =, J. N D # (.



We can write 28+P) — z(®) = S°P ((k+0) _ g(k+=1)) “thus
Hx (k+p) k)” < ZHx (k+i) _ k+z l)H

k
<(IP 4P 2 4 )Y — ) < LiLHm(l) — 2],
since L < 1. For the same reason, the sequence satisfy (5), so the sequence
converges to some z* € D. Since the inequality is true for all p > 0 it is also
true for z*, proving (4c).
To prove that the fixed point is unique, let * and y* be two different fixed
points in D. Then

2" = || = [|G(z") = G| < [l=" = 7
which is impossible. O

For a given problem, it is not necessarily straightforward to justify the two
assumptions of the theorem. But it is sufficient to find some L satisfying the
condition L < 1 in some norm to prove convergence.

Let © = [21,...,75,)T and G(x) = [g1(),...,gm(x)]T. Let y,v € D, and
let z(0) = Oy + (1 — 0)v be the straight line between y and v. The mean value
theorem for functions gives

9i(y) — gi(v) = gi(z(1)) — gi(x(0)) = % —7 (@)1 -0), 6e(0,1)

do
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since dz;(0)/df = y; — v;. Then
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|9i(y) |_Z| M-y — v;] < Z|8x'(azi)| max|y; — vl
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If we let g;; be some upper bound for each of the partial derivatives, that is
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()| < gij, forallz e D.

then

IG(y) = Gl = | max D g | Iy = vlc-

J=1

We can then conclude that (4b) is satisfied if

m
max gii < 1.
D
]:



Newton’s method

Newton’s method is a fixed point iterations for which
G(z®)) = 2 — J(@F) = p(2®),

where the Jacobian is the matrix function

@ e
J(z) = : :
Frw) o Fm@)

It is possible to prove that if i) (1) has a solution x*, ) J(x) is nonsingular in
some open neighbourhood around z* and 4iz) the initial guess 2 is sufficiently
close to x*, the Newton iterations will converge to x* and

lz* — 2@ V|| < Kll2* — 2@

for some positive constant K. We say that the convergence is quadratic.

Steepest descent

Steepest descent is an algorithm that search for a (local) minimum of a given
function g : R™ — R. The idea is as follows.
a) Given some point x € R™.
b) Find the direction of steepest decline of g from x (steepest descent direction)
¢) Walk steady in this direction till g starts to increase again.
d) Repeat from a).

The direction of steepest descent is —Vg(z), where the gradient Vg is given
by

dg
Vyg(z) = 8—x1(x), .

And the steepest descent algorithm reads

function STEEPEST DESCENT(g, ()
for k=0,1,2,.... do
z=—Vg(z®)/|Vg(z®)| > The steepest descent direction.
Minimize g(z® + az), giving o = o*.
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end for
end function

This algorithm will always converge to some point z* in which Vg(z*) = 0,
usually a local minimum, if one exist. But the convergence can be very slow.

This can be used to find solution of the nonlinear system of equations (1)
by defining

g(z) = F(x)T F(z) = ||F(x)|3.

Thus, z* is a minimum of g(x) if and only if z* is a solution of F(z) = 0. In
this case, we can show that

Vg(z) = 2J(z)  F(z).



