
1 Eulers method.

Let us start this introduction to the numerical solution of ordinary differential
equations (ODEs) by something familiar. Given a scalar (one equation only)
ODE

y′ = f(t, y), t0 ≤ t ≤ tend, y(t0) = y0, (1)

in which the function f , the integration interval [t0,tend] and the initial value
y0 is assumed to be given. The solution of this initial value problem (IVP) is a
function y(t) on the interval [t0, tend].

Example 1.1. The ODE/IVP

y′ = −2ty, 0 ≤ t ≤ 1, y(0) = 1.0

has as solution the function
y(t) = e−t

2
.

But in many practical situations, it is not possible to express the solution y(t)
in closed form, even if a solution exist. In these cases, a numerical algorithm can
give an approximation to the exact solution. Let us start with Eulers method,
which should be known from some calculus classes. Divide the interval [t0, tend]
into Nstep equal subintervals, each of size h = (tend − t0)/Nstep, and let tn =
t0 + nh. Euler’s method can be derived by several means. One possibility is to
use the first few terms of the Taylor expansion of the exact solution, which is
given by

y(t0+h) = y(t0)+hy
′(t0)+

1

2
h2y′′(t0)+· · ·+

1

p!
hpy(p)(t0)+

1

(p+ 1)!
hp+1y(p+1)(ξ),

(2)
where ξ is somewhere between t0 and tend. The integer p ≥ 1 is a number of
our own choice, but we have to require y to be sufficiently differentiable, in this
case that y(p+1) exist and is continuous. If h is small, we may assume that the
solution will be completely dominated by the first two terms, thus

y(t0 + h) ≈ y(t0) + hy′(t0) = y0 + hf(t0, y0),

and we call this approximate solution y1. Starting from the point t1 = t0+h and
y1 we can repeat the process. We have now developed Euler’s method, given by

yn+1 = yn + hf(tn, yn), n = 0, 1, · · · , Nsteps− 1,

resulting in approximations yn ≈ y(tn).

Example 1.2. Eulers method with h = 0.1 applied to the ODE of Example 1.1
gives

1

tn yn
0.0 1.0000
0.1 1.0000
0.2 0.9800
0.3 0.9408
0.4 0.8844
0.5 0.8136
0.6 0.7322
0.7 0.6444
0.8 0.5542
0.9 0.4655
1.0 0.3817

.

In this case we know the exact solution, y(1.0) = e−1.0
2
= 0.3679 and the error

at the endpoint is e10 = y(1.0)−y10 = −1.38 ·10−2. If we repeat this experiment
(write a MATLAB program to do so) with different stepsizes, and measure the
error at the end of the interval, we get

h eNstep = y(1.0)− yNstep

0.1 −1.38 · 10−2
0.05 −6.50 · 10−3
0.025 −3.16 · 10−3
0.0125 −1.56 · 10−3

.

From this example, it might look like the error at the endpoint eNstep ∼ h,
where h = (tend− t0)/Nstep. But is this true for all problems, and if yes, can
we prove it? To do so, we need to see what kind of errors we have and how
they behave. This is illustrated in Figure 1. For each step an error is made,
and these errors are then propagated til the next steps and accumulate at the
endpoint.

Definition 1.3. The local truncation error dn+1 is the error done in one step
when starting at the exact solution y(tn). The global error is the difference
between the exact and the numerical solution at point tn, thus en = y(tn)− yn.

The local truncation error of Euler’s method is

dn+1 = y(tn + h)− y(tn)− hf(tn, y(tn)) =
1

2
h2y′′(ξ),

where ξ ∈ (tn, tn+1). This is given from the Taylor-expansion of y(tn+h) around
tn with p = 1. To see how the global error propagates from one step to the next,
the trick is: We have

y(tn + h) = y(tn) + hf(tn, y(tn)) + dn+1,

yn+1 = yn + hf (tn, yn) .

Take the difference of these two, and get

2

t
n

t
n+1t

0
t
end

y
0

y
n

y
n+1

y
Nstep

y(t
n
)

y(t
n+1

) y(t
end

)

d
n+1

e
n

Figure 1: Lady Windermere’s Fan

en+1 = en+h (f (tn, y(tn))− f (tn, yn))+dn+1 = (1+hfy(tn, v))en+dn+1, (3)

where v is somewhere between y(tn) and yn. We have here used the mean value
theorem (Theorem 1.8 in Burden and Faires) for f (tn, y(tn))− f (tn, yn). This
is about as far as we get with exact calculations, since ξ in dn+1 as well as v
in fy are unknown, and will also change from one step to the next. So we will
look for an upper bound of the global error. We will first assume upper bounds
for our unknown, that is, we assume there exist positive constants D and L so
that

1

2

∣∣y′′∣∣ ≤ D for all t ∈ (t0, tend) and |fy| ≤ L for all t ∈ [t0, tend] and for all y.

Taken the absolute value of both sides of (3) and using the triangle inequality
gives

|en+1| ≤ (1 + hL) |en|+Dh2.

Since e0 = 0 (there is no error at the initial point) we can use this formula
recursively to get an upper bound for the error at the endpoint:

|e1| ≤ Dh2,
|e2| ≤ (1 + hL)Dh2 +Dh2

...

|eNstep| ≤
Nstep−1∑

i=0

(1 + hL)iDh2 =
(1 + hL)Nstep − 1

1 + hL− 1
Dh2.

3

Using the fact that 1 + hL ≤ ehL (why?) and h · Nstep = tend − t0 we finally
reach the conclusion

|eNstep| ≤
(
ehL
)Nstep − 1

L
Dh =

eL(tend−t0) − 1

L
D · h = C · h.

The constant C =
(
ehL − 1

)
D/L depends only on the problem, and we have

proved convergence

|y(tend)− yNstep| → 0 when h→ 0 (or Nstep→∞).

Summary: In this section we have

1. Formulated the problem.

2. Developed an algorithm.

3. Implemented and tested it.

4. Proved convergence.

This is fairly much what this course in Numerical Mathematics is about. To be
more precise, for each class of problems (ODEs, integrals, linear and nonlinear
equations,· · ·) we will roughly do the following

1. Formulate the problem. What do we know about it? What about exis-
tence and uniqueness results?

2. Develop an algorithm to find a solution. Can it be generalised?

3. Implement and test the algorithm. Test it on problems with known solu-
tions. Do we get a reasonable result?

4. Prove convergence. How accurate is the algorithm?

5. Verify the theoretical results by numerical experiments.

6. Try the algorithm on harder problems. Do we get unexpected results? If
yes, can they be explained? Can we get around them?

7. Can we make our algorithm to automatically adjust itself to fulfil require-
ments given by the user (adaptivity)?

The last two points do not apply to all the problems we are going to discuss. We
will also derive mathematical results that are useful for either the theoretical
analysis, or for development of methods.

4

