Orthogonal polynomials.

The aim of this section is to construct "optimal" quadrature formulas. To be more specific, given the integral

$$
\begin{equation*}
I_{w}(f)=\int_{a}^{b} w(x) f(x) d x \tag{1}
\end{equation*}
$$

in which $w(x)$ is a fixed, positive function. We want to approximate this using a quadrature formula on the form

$$
Q_{w}(f)=\sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
$$

Such a formula can be constructed as follows: Choose $n+1$ distinct nodes, $x_{0}, x_{1}, \cdots, x_{n}$ in the interval $[a, b]$. Construct the interpolation polynomial

$$
p_{n}(x)=\sum_{i=0}^{n} f\left(x_{i}\right) \ell_{i}(x), \quad \ell_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} .
$$

An approximation to the integral is then given by

$$
\begin{equation*}
Q_{w}(f)=\int_{a}^{b} w(x) p_{n-1}(x) d x=\sum_{i=0}^{m} A_{i} f\left(x_{i}\right), \quad A_{i}=\int_{a}^{b} w(x) \ell_{i}(x) d x . \tag{2}
\end{equation*}
$$

The quadrature formula is of precision m if

$$
I_{w}(p)=Q_{w}(p), \quad \text { for all } p \in \mathbb{P}_{m}
$$

From the construction, these quadrature formulas is of precision at least n. The question is how too choose the nodes $x_{i}, i=0, \ldots, n$ giving m as large as possible. The key concept here is orthogonal polynomials.

Orthogonal polynomials.

Given two functions $f, g \in C[a, b]$. We define an inner product of these two functions by

$$
\begin{equation*}
<f, g>=\int_{a}^{b} w(x) f(x) g(x) d x, \quad w(x)>0 . \tag{3}
\end{equation*}
$$

Thus the definition of the inner product depends on the integration interval $[a, b]$ and a given weight function $w(x)$. If $f, g, h \in C[a, b]$ and $\alpha \in \mathbb{R}$ then

$$
\begin{aligned}
\langle f, g\rangle_{w} & =\langle g, f\rangle_{w} \\
\langle f+g, h\rangle_{w} & =\langle f, h\rangle_{w}+\langle g, h\rangle_{w} \\
\langle\alpha f, g\rangle_{w} & =\alpha\langle f, g\rangle_{w} \\
\langle f, f\rangle_{w} & \geq 0, \quad \text { and } \quad\langle f, f\rangle_{w}=0 \Leftrightarrow f \equiv 0 .
\end{aligned}
$$

From an inner product, we can also define a norm on $C[a, b]$ by

$$
\|f\|_{w}^{2}=\langle f, f\rangle_{w}
$$

For the inner product (3) we also have

$$
\begin{equation*}
\langle x f, g\rangle_{w}=\int_{a}^{b} w(x) x f(x) g(x) d x=\langle f, x g\rangle_{w} . \tag{4}
\end{equation*}
$$

Our aim is now to create an orthogonal basis for \mathbb{P}, that is, create a sequence of polynomials $\phi_{k}(x)$ of degree k (no more, no less) for $k=0,1,2,3, \ldots$ such that

$$
\left\langle\phi_{i}, \phi_{j}\right\rangle_{w}=0 \quad \text { for all } \quad i \neq j .
$$

If we can make such a sequence, then

$$
\mathbb{P}_{n-1}=\operatorname{span}\left\{\phi_{0}, \phi_{1}, \cdots, \phi_{n-1}\right\} \quad \text { and } \quad\left\langle\phi_{n}, p\right\rangle_{w}=0 \quad \text { for all } \quad p \in \mathbb{P}_{n-1} .
$$

Let us now find the sequence of orthogonal polynomials. This is done by a Gram-Schmidt process:

Let $\phi_{0}=1$. Let $\phi_{1}=x-B_{1}$ where B_{1} is given by the orthogonality condition:

$$
0=\left\langle\phi_{1}, \phi_{0}\right\rangle_{w}=\langle x, 1\rangle_{w}-B_{1}\langle 1,1\rangle_{w} \quad \Rightarrow \quad B_{1}=\frac{\langle x, 1\rangle_{w}}{\|1\|_{w}^{2}}
$$

Let us now assume that we have found $\phi_{j}, j=0,1, \ldots, k-1$. Then, let

$$
\phi_{k}=x \phi_{k-1}-\sum_{j=0}^{k-1} \alpha_{j} \phi_{j} .
$$

Clearly, ϕ_{k} is a polynomial of degree k, and α_{j} can be chosen so that $\left\langle\phi_{k}, \phi_{i}\right\rangle_{w}=0, i=$ $0,1, \ldots, k-1$, or

$$
\left\langle\phi_{k}, \phi_{i}\right\rangle_{w}=\left\langle x \phi_{k-1}, \phi_{i}\right\rangle_{w}-\sum_{j=0}^{k-1} \alpha_{j}\left\langle\phi_{i}, \phi_{j}\right\rangle_{w}=\left\langle x \phi_{k-1}, \phi_{i}\right\rangle_{w}-\alpha_{i}\left\langle\phi_{i}, \phi_{i}\right\rangle_{w}=0, \quad i=0,1, \cdots, k-1 .
$$

So $\alpha_{i}=\left\langle x \phi_{k-1}, \phi_{i}\right\rangle_{w} /\left\langle\phi_{i}, \phi_{i}\right\rangle_{w}$. But we can do even better. Since ϕ_{k-1} is orthogonal to all polynomials of degree $k-2$ or less, we get

$$
\left\langle x \phi_{k-1}, \phi_{i}\right\rangle_{w}=\left\langle\phi_{k-1}, x \phi_{i}\right\rangle_{w}=0 \quad \text { for } \quad i+1<k-1 .
$$

So, we are left only with α_{k-1} and α_{k-2}. The following theorem concludes the argument:
Theorem 1. The sequence of orthogonal polynomials can be defined as follows:

$$
\begin{aligned}
& \phi_{0}(x)=1, \quad \phi_{1}(x)=x-B_{1} \\
& \phi_{k}(x)=\left(x-B_{k}\right) \phi_{k-1}(x)-C_{k} \phi_{k-2}(x), \quad k \geq 2
\end{aligned}
$$

with

$$
B_{k}=\frac{\left\langle x \phi_{k-1}, \phi_{k-1}\right\rangle_{w}}{\left\|\phi_{k-1}\right\|_{w}^{2}}, \quad C_{k}=\frac{\left\langle x \phi_{k-1}, \phi_{k-2}\right\rangle_{w}}{\left\|\phi_{k-2}\right\|_{w}^{2}}=\frac{\left\|\phi_{k-1}\right\|_{w}^{2}}{\left\|\phi_{k-2}\right\|_{w}^{2}}
$$

The last simplification of C_{k} is given by:

$$
\begin{aligned}
\left\langle x \phi_{k-1}, \phi_{k-2}\right\rangle_{w} & =\left\langle\phi_{k-1}, x \phi_{k-2}\right\rangle_{w} \\
\phi_{k-1} & =x \phi_{k-2}-B_{k-1} \phi_{k-2}-C_{k-1} \phi_{k-3} .
\end{aligned}
$$

Solve the second with respect to $x \phi_{k-2}$, replace it into the right hand side of the first expression, and use the orthogonality conditions.
Example 2. For the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

we get

$$
\begin{array}{rlrlr}
\phi_{0}=1, & \left\langle x \phi_{0}, \phi_{0}\right\rangle=0, & \left\langle\phi_{0}, \phi_{0}\right\rangle=2, & B_{1}=0, & \\
\phi_{1}=x, & \left\langle x \phi_{1}, \phi_{1}\right\rangle=0, & \left\langle\phi_{1}, \phi_{1}\right\rangle=\frac{2}{3}, & B_{2}=0, & C_{2}=\frac{1}{3} \\
\phi_{2}=x^{2}-\frac{1}{3} & \left\langle x \phi_{2}, \phi_{2}\right\rangle=0, & \left\langle\phi_{2}, \phi_{2}\right\rangle=\frac{8}{45}, & B_{3}=0, & C_{3}=\frac{4}{15} \\
\phi_{3}=x^{3}-\frac{3}{5} x, & & \text { etc. } & &
\end{array}
$$

These are the well known Legendre polynomials.
Example 3. Let $w(x)=1 / \sqrt{1-x^{2}}$, and $[a, b]=[-1,1]$. We then get the sequence of polynomials:

$$
\begin{array}{lllll}
\phi_{0}=1, & \left\langle x \phi_{0}, \phi_{0}\right\rangle_{w}=0, & \left\langle\phi_{0}, \phi_{0}\right\rangle_{w}=\pi, & B_{1}=0, & \\
\phi_{1}=x, & \left\langle x \phi_{1}, \phi_{1}\right\rangle_{w}=0, & \left\langle\phi_{1}, \phi_{1}\right\rangle_{w}=\frac{\pi}{2}, & B_{2}=0, & C_{2}=\frac{1}{2} \\
\phi_{2}=x^{2}-\frac{1}{2} & \left\langle x \phi_{2}, \phi_{2}\right\rangle_{w}=0, & \left\langle\phi_{2}, \phi_{2}\right\rangle_{w}=\frac{\pi}{2}, & B_{3}=0, & C_{3}=\frac{1}{4} \\
\phi_{3}=x^{3}-\frac{3}{4} x, & \text { etc. } & & &
\end{array}
$$

These are nothing but the monic Chebyshev polynomials \tilde{T}_{k}.
The following theorem will become useful:
Theorem 4. Let $f \in C[a, b], f \not \equiv 0$ satisfying $\langle f, p\rangle_{w}=0$ for all $p \in P_{k-1}$. Then f changes signs at least k times on (a, b).
Proof. By contradiction. Suppose that f changes sign only $r<k$ times, at the points $t_{1}<$ $t_{2}<\cdots<t_{r}$. Then f will not change sign on each of the subintervals:

$$
\left(a, t_{1}\right),\left(t_{1}, t_{2}\right), \cdots,\left(t_{r-1}, t_{r}\right),\left(t_{r}, b\right)
$$

Let $p(x)=\prod_{i=1}^{r}\left(x-t_{i}\right) \in \mathbb{P}_{r} \subseteq \mathbb{P}_{k-1}$. Then $p(x)$ has the same sign properties as $f(x)$, and $f(x) p(x)$ does not change sign on the interval. Since $w>0$ we get

$$
\int_{a}^{b} w(x) f(x) p(x) \neq 0
$$

which contradicts the assumption of the theorem.
Corollary 5. The orthogonal polynomial ϕ_{k} has exactly k distinct zeros in (a, b).

