TMA4215 Numerical Mathematics
Autumn 2010

Solution 2

Task 1

From the note on nonlinear equations, we know that it is sufficient to show the two conditions
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It is relatively easy to see that

gl(l, 1,$3) ~0.34 < gl(.%'l,.%'g,xg) <0.5 = 91(0,562,1‘3)
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g3(—1,1,23) = —0.61 < g3(w1,22,73) < —0.49 =~ go(1, 1, x3)

SO is satisfied. Likewise, we can show that
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for all x € D. This means that
3
max » _ g;; = max{0.562,0.186,0.272} = 0.562 < 1
7 =
so condition is also satisfied. Test this numerically yourself.
Task 2
The fixed point iterations are given by
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so we can view this as fixed point iterations on two scalar equations:

r=gi(x) = Y1-22,  x=gyz) = V1223

Start by locating the fixed points. This is easily done graphically:
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This shows that g; has a fixed point near 0.8, and g2 one near 0.5. For each of these, we must
now find an interval [a, b] so that i) g;([a,b]) C [a,b] and i) |g.(z)] < 1 for = € [a, b].

Let us look at g; first. We see that

/ . €z /

But this interval does not satisfy i). However, g7 is monotonically decreasing. After a little
trial and error, we find

91([0.76,0.87]) C [0.76,0.87].

Similarly, we can show that the two conditions are satisfied for go on the interval [0.22,0.80].
Thus, we have proven that the equation has a unique fixed point in the region

D={zeR?:0.76 < z; <0.87,0.22 < x5 < 0.80}

and the iterations converge for all starting values in this region.

Task 3

Rewrite the iteration scheme on the form

Qx* ) = (@ — A)x® + b

with
4 0 O -1 -1 1 2
Q=106 0 , (Q—A) = 2 1 -1, and b= -1
0 0 —4 -1 1 -1 4

and x®) = [z4,yp, 2)7. Find T = Q 1(Q — A) og A, and show ||T||c = 0.75. Thus the
iteration scheme converges for all starting values. Further, limg_. oo x(*) = x, where x is the
solution of Ax = b. The exact solution in this case is « = [1/9,1/9,—4/3]. You can find this
by iterating until convergence, or by solving the system using Gaussian elimination.



By the use of theorem 1.1 from the note on nonlinear equations, using D = R? and L = ||T||oo
we get
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or

k
”X(kz) _ XHoo < - ||TH<>o Ha:(l) _ X(O)”OO < 104

Do one iteration to get x(1), insert ||T'||s, and see that k = 37 is sufficient. Such bounds are
almost always very conservative, so in practice less iterations are needed.

Task 4
a)
1.6 1.08 0.96
D=1 05 |, 2@ = | 1.06 |, 23 = | 1.03333
1.26 1.06 0.98267
The iterations seem to converge, which is reasonable since the matrix is strictly diagonally
dominant.
b)
1.6 9.20 153.07
eW =1 53 |, 2@=]| 11511, 2®=| 21557
—-17.3 —339.1 —6317.0

The iterations diverge. The spectral radius of the iteration matrix can be found to be
p(T') = 18.58 using MATLAB, so divergence is reasonable.

Notice that the equations are the same, they are only permuted.

Task 5

See the suggested solution to the exam.



