TMA4215 Numerical Mathematics

Autumn 2010

Exercise 2

Task 1

Given

$$G(x) = \begin{pmatrix} \frac{1}{3}\cos(x_1x_2) + \frac{1}{6} \\ \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \\ -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60} \end{pmatrix}$$

Show that the fixed point iterations $x^{(k+1)} = G(x^{(k)})$ converge towards a unique fixed point for all starting values $x^{(0)}$ in $D = \{x \in \mathbb{R}^3 : -1 \le x_i \le 1, i = 1, 2, 3\}.$

Verify the result numerically.

Task 2

Consider the system of equations from the exercise 1,

$$x_1^2 + x_2^2 = 1,$$

$$x_1^3 - x_2 = 0.$$

This has two solutions, one in the region $-1 \le x_1, x_2 \le 0$ and one in $0 \le x_1, x_2 \le 1$. It is possible to show numerically that the iteration scheme based on the formulation

$$x_1 = \sqrt[3]{x_2},$$

 $x_2 = \sqrt{1 - x_1^2}$

converges with appropriate starting values.

Explain why. How would you select starting values?

Hint: It is simpler to analyse results if you consider two subsequent iterations as one.

Task 3

Given the iteration scheme:

$$4x_{k+1} = -x_k - y_k + z_k + 2$$

$$6y_{k+1} = 2x_k + y_k - z_k - 1$$

$$-4z_{k+1} = -x_k + y_k - z_k + 4$$

Prove that $\mathbf{x}^{(k)} = [x_k, y_k, z_k]^T$ converges to a limit \mathbf{x} for all starting values $\mathbf{x}^{(0)}$ when $k \to \infty$. What is the limit \mathbf{x} ?

How many iterations are needed to ensure $\|\mathbf{x}^{(k)} - \mathbf{x}\|_{\infty} \leq 10^{-4}$ if $\mathbf{x}^{(0)} = [0, 0, 0]^T$? Is this number realistic, or do you think that less iterations are needed in practice?

Task 4

Solve the two systems of equations by Gauss–Seidel iterations:

$$3x + y + z = 5$$

$$x + 3y - z = 3$$

$$3x + y - 5z = -1$$
(1)

$$3x + y + z = 53x + y - 5z = -1x + 3y - z = 3.$$
 (2)

Use $[0.1, 0.1, 0.1]^T$ as the starting point. First do a few iterations by hand, and then you can use the MATLAB program gs.m.

Comment the results. Do they comply with theory?

Task 5

Exam problem: December 2008, problem 5.