TMA4215 Numerical Mathematics
Autumn 2010

Solution 5

Task 1

Here you only need to differentiate and insert.

Task 2
We study Hermite interpolation, which is characterised by a polynomial p(z) defined on n + 1
distinct nodes zg, z1, ..., T, satisfying the conditions

p(x) =vi, plx;)=v;, i=0,1,....n (1)

where {y;}*, and {v;}}" , are arbitrary, specified values.

a)

b)

It is reasonable to assume p € Pa, 41 since specifies 2n + 2 conditions (2 conditions for
each of the n + 1 points). A polynomial of degree 2n + 1 can generally be represented by

2 2 o2n+1
ap + a1z + asx® + - - + agp " + agpp1 2T

and thus has 2n + 2 parameters ag, a, . . ., a2,+1. Hence, we can use the conditions (|1
to uniquely determine these parameters.

We assume that the functions A;(z) and B;(z) (which are not specified for now), all
defined for ¢ = 0,1, ..., n, satisfy

Ai(xj) = 65, Bi(zj) =

Afa) =0,  Blry) @

0
5ij

for all 4,7 =0,1,...,n. We define the function g(z) as
n n
g(z) = Z yiAi(r) + Z v; Bi(x). (3)
i=0 i=0
Note: We have not yet said anything about which type of function A4;(x) and B;(x) are,

just that they shall satisfy the conditions .
Given the function g(z) in we find for arbitrary j =0,1,...,n

glx;) = widi(zj) + Y _viBi(z;) = > yibi; + > _vi-0=1y;,
i=0 i=0 i=0 i=0

n n n n
(@) =D yidi(w;) + D viBi(zy) =Y yi-0+ ) vidij =v;.
=0 =0 =0 =0

Thus, we have shown that a function g(x) as defined in satisfies as long as the
bastis functions A;(z) and B;(z) satisty (2).



c)

d)

We will now look at possible representations of the basis functions A;(x) and B;(z).
Specifically, we look at basis functions A; € Py, 11 and B; € Py,+1. We use the cardinal

functions n
T — T
J
Litr) = [[ —*
iy Ti — Tj
JF#i

which satisfy L;(z;) = d;; and study the functions
Aj(w) = (1= 2(x — ) Li(;)) L (x), Bi(z) = (v — ;) L} (x). (4)
It is obvious that A; € P, 11 and B; € Py, 1. Next, we find that
Aj(x) = =2L(2;) L} (x) + 2(1 — 2(x — ;) L(2:)) Li(z) Lj ()
=2L;(x)Lj(z)(1 — Li(z) — 2(z — ;) Lj(z;))
Bl(z) = L¥(z) + 2(z — ;) Li(z) L}(x) = Ll(x)(LZ(.CU) +2(x — xl)L;(x))

)

We see that the polynomials A;(z) and B;(x) satisfy for all i,7 =0,1,...,n. Thus,
the polynomials are polynomials of degree 2n + 1 which satisfy the necessary basis
conditions and can be used as basis functions for construction of polynomials of degree 2n+
1 satisfying conditions (T]).

We shall find a third degree polynomial p(z) satisfying
p(1) =1, p(1)=3, p2) =14, p(2)=24.

In this case 2n +1 =3 = n =1 and we find

-2 -1
:f_sz_x, Li(z)= 2= =

Ly(x) = —1, Ly(z) =
Li(x) = 2 — 4z + 4, Li(x) =2 -2z +1

From the representation we find

Ag(z) = (1—2(z —1)- (-1))(2® — 4z +4) = (22 — 1)(2® — 4o + 4)
Aj(z)=(1-2(x—2)-1)(z® — 2z +1) = (5 — 22)(z* — 22 + 1)
Bo(z) = (z — 1)(2® — 4z + 4)

By(z) = (z — 2)(2* — 2z + 1)

Thus, the third degree polynomial satisfying the conditions above is given by

p(r) = (20 —1)(2* — 4z +4) + 3 (z — 1)(2* — 4z + 4)
+14-(5—22)(2® — 2z + 1) + 24 - (x — 2)(2* — 22 + 1)
=23+ 622 — 122 +6.

The final result follows easily from a little calculation.



Task 3

To solve this task, you can consider all splines of degree 1 on [a, b] as piecewise linear continuous
functions. Then we can try to build s(z) so that it is correct on each interval I; := [z;_1, x].

We see that (x — JUZ-_l)+ is zero for x < x;_1 and coincides with the straight line with slope 1
through z;_; for # > x;_1. By multiplying (z — x;_1)" with a constant o we modify the slope
of the line from 1 to «.

So on I; := [x;_1,x;], s(x) is of the form
slr,(z) =B+ a(z — ziq)T.

To find the correct value of s(x) on I;11 := [x;, z+1], we can use that on the interval ;11 (and
also for all z € R, z > x;),

B+alr—mz1)" — (7 + oz — 331)"') =0,

where v = 8+ a(x; — z;—1). Applying this process to all the intervals, we get the desired result.

Task 4

Consider 7 so that |s]| = max;|s}/|, and consider equation 7 in the system of linear equations
used for calculating the natural cubic splines:

hs{_y + 4hs! + hs],; =6 (fi“ —fi _fio fH) .

h h

/) =

By using that |s max;|s; | and Taylor’s theorem, we have that

4h|si| < hlsi_q| 4 hlsiq| 4+ 61 (mi) = f'(nie1)| < 2h]s] ]+ 61" (m:) — f'(nic1)
and thus
hlsi| < 31f (ni) — f'(ni1)l,
with 7; € (x4, it1), ni—1 € (xi—1, ;). Additionally we have

_ 1m) = f'(nia)

W=Dl ) < g1 < 200 e

|f/(77¢) - f/(m'—l)|

so that
|57 | < 6] f" o



Application of the result in task 4

Under the assumptions of task 4, we now want to show the error bound
7 2 1
(@) = s(@)] < gh71f oo (5)
Consider the interval [x;_1,z;], and let Z € (z;_1, ;). Consider the function

g(2) = f(a) — s(a) — TN pay

(i‘ — .%'Z)(i' — xi—l)

We have g(z;) =0, g(x;_1) = 0 and g(Z) = 0, so ¢"(z) has at least one zero & € (z;_1, ;) so

that we get 2
0=f"(&)—s"(&) - (T — ) (T — 2i_1)

(f(@) - 5(2)),

and

1(2) - (@) = T IE 2T (g ey,

Since §”(z) is a linear polynomial on [z;_1, 4], (a straight line between (x;_1,s; ;) and
(z,5])), we have

|s" ()] < max{[s{_y|,[s]]}, Vi.
Also, one can easily show (see exercise 3, task 3) that

h2

(@ —2i)( —zi1)| < -,
which leads to )

|f(z) —s(z)| < §h2(||f”lloo + m?X!S’i’I)-

Together with the result of task 4, this gives ().



