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Semester project TMA4215
Deadline November 15th 2010

You can work in groups of maximum 3 persons. This project is divided
in two parts: the first part is a set of exercises relevant for the final exam.
The solution of this part can be handwritten; the second part is a project on
the approximation of elliptic functions and integrals.Your reports for this part
should not exceed 4 pages (reduce the size of the figures to stay within the
limits of pages). We appreciate if you try to write well documented Matlab
code.

Part 1

Problem 1 Show that the polynomial p(x) of degree less than or equal to
2 satisfying

p(0) = y1, p(1) = y2,

∫ 1

0
p(t) dt = y3,

exists and is unique.

Problem 2 Show that if φ(x) = f(x)g(x), then the following formula holds
for the divided differences

φ[x0, x1, . . . , xn] =
n∑
r=0

f [x0, x1, . . . , xr]g[xr, . . . , xn].

Problem 3 We shall study and construct splines of degree 2 on the knots
a = x0 < x1 < · · · < xn = b.

a) Consider the construction of the quadratic spline interpolating the data

x x0 . . . xn

f(x) f0 . . . fn

and with the extra condition s′(x0) = 0. Derive the linear system of
equations to be solved to compute the s′i, i = 0, . . . , n by means of the fi,
i = 0, . . . , n. Here s′i := s′(xi).

Consider then the data

x 0 0.5 1

f(x) 1 2 0.5
.
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Solve the linear system you obtained to construct the quadratic spline,
and give an expression for the spline as a polynomial of degree 2 on each
subinterval I0 and I11.

b) Show the error bound

|f(x)− s(x)| ≤ 2h‖f ′‖∞, ∀x ∈ [a, b],

where f ∈ C1([a, b]) and s(x) is the quadratic spline interpolating the
data fi := f(xi), i = 0, . . . , n and the knots are assumed equidistant
(xi − xi−1 = h for i = 1, . . . , n).

Problem 4 The function

R(z) =
1 + z/2

1− z/2
= 1 +

∞∑
n=1

zn

2n−1
, (1)

is defined for all −2 < z < 2.

a) Prove that ez −R(z) = − z3

12 +O(z4).

b) Find a unit diagonal, lower triangular matrix L and an upper triangular
matrix U such that LU = A when

A =

 1.10 −0.05 0.00
−0.05 1.10 −0.05
0.00 −0.05 1.10

 .
Hint: Pivoting is not needed.

c) The matrix exponential ehX where X is a square matrix and h ∈ R, is
defined by the series expansion

ehX = I +
∞∑
n=1

(hX)n

n!
. (2)

Here, I is the identity matrix of the same size as X. We remark that this
series converges for all square matrices X.

In this problem we will use rational approximations to ehX . Specifically,
we will evaluate R(hX) with R(z) defined by the power series in (1).

Assume ‖h2X‖ < 1, use the Neumann series2 for (I − h
2X)−1 to obtain a

closed form expression for R(hX).
1The polynomial on each of the two intervals is a function of the computed s′i and of the

interpolated values si = fi, i = 0, 1, 2.
2Ch. 4.5 Kincaid and Cheney.
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d) We want to compute the second column of R(hX), which we denote by
x. Show that this amounts at solving a linear system of equations Ax = b
for x. Give an expression for A and b. Assume then

h = 0.1, X =

−2 1
1 −2 1

1 −2

 ,
and compute x.
Hint: The constant 1 must be replaced by the identity matrix when
evaluating R(z) at matricial arguments.
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Part 2

Romberg quadrature

Problem 5 Given 0 ≤ k < 1, the function

ϕ 7→ F (ϕ, k) :=

∫ ϕ

0

dθ√
1− k2 sin2 θ

(3)

is called (incomplete) Jacobi elliptic integral of the first kind with modulus k
and is an invertible smooth map. Its inverse is called amplitude of modulus k
and is an odd function

am( · , k) : R→
(
− π

2
,
π

2

)
,

and ϕ = am(u, k) is simply the solution of the scalar nonlinear equation

G(ϕ) = 0, G(ϕ) := F (ϕ, k)− u. (4)

The Jacobi elliptic functions sn and cn of modulus k are the functions R →
[−1, 1] defined as

sn(u, k) = sin(am(u, k)) , cn(u, k) = cos(am(u, k)) (5)

and are periodic of period 4K(k), where K(k) = F (π2 , k) (the so called complete
elliptic integral of the first type of modulus k). We can also define the functions

dn(u, k) =
√

1− k2sn(u, k)2 , sd(u, k) =
sn(u, k)

dn(u, k)
. (6)

The Jacobi elliptic functions can be computed using the built in Matlab routine
ellipj based on the use of the so called Arithmetic Geometric Mean method.

We want here to use Romberg integration to compute the Jacobi elliptic integrals
of the first kind, solve (4) with Newton method, and use (5) and (6) to compute
the elliptic functions.

a) Implement a Matlab function performing Romberg integration to evaluate
elliptic integrals of the first kind. Give in input [0, ϕ] and n to the Romberg
routine: 2n is the number of intervals used in the row n+1 of the Romberg
matrix (see Kincaid and Cheney chapter 7).

Compare the results you obtain and the results given by one of the built
in Matlab routines for quadrature.
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You should provide numerical evidence of the convergence of Romberg
algorithm as n → ∞. Keep ϕ and k fixed and use a sufficiently small
tolerance in the built-in Matlab routine. Consider E(n, 0) := |F (ϕ, k) −
R(n, 0)|, E(n, n) := |F (ϕ, k) − R(n, n)|, where R(n,m) for n = 0, . . . ,
m = 0, . . . , n are the entries of the Romberg matrix.

Consider then F (π2 , k), the complete elliptic integral of the first kind. This
integral can be efficiently computed in Matlab by the routine ellipke.
Investigate numerically the performance of the Romberg algorithm: what
do you observe. Explain the behavior using the Euler-Mclaurin formula.3

b) Modify your Romberg routine so that you can give a prescribed tolerance
TOL as input instead of the value n. Use the following estimate for the
error

Est(n,m) :=
1

4m − 1
[R(n,m− 1)−R(n− 1,m− 1)].

If |Est(n,m)| < TOL give R(n,m) as output approximation to the in-
tegral. Compare the results you get with what you obtain using built-in
Matalb functions for quadrature: do you get numerical approximations
within the accuracy prescribed by your tolerance? Show this with a nu-
merical experiment.

c) Implement Newton’s method for (4) to obtain ϕ = am(t, k) and evalu-
ate the Jacobi elliptic functions by (5) and (6). Observe that G′(ϕ) =

1√
1−k2 sin2 ϕ

. Implement an appropriate stopping criterion for the Newton

method.

How should you choose the tolerance for stopping the Newton iteration
compared to the tolerance of the Romberg algorithm?

The accuracy of the quadrature will influence the solution of the nonlinear
equation by the Newton method. Compare the results you obtain and the
results given by ellipj in Matlab. If you use TOL= 1e − 16 and your
program is implemented properly, your results should differ from the values
produced by ellipj no more than C·TOL with C a constant and C ≤ 10.

Test your routines first with positive and negative input values u of mod-
erate absolute value |u|. Then increase |u|, if the performance of your code
deteriorates, try to suggest and implement strategies to improve the code.

3Note that a similar behavior can be observed when using Romberg method and the trape-
zoid rule to approximate the following integrals:

∫ α+2π

α
cos(x) dx or

∫ α+1

α
sin(2πx) dx.
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Rigid body simulation

Problem 6

Consider the free rigid body Euler equations

ṁ = m× (T−1m), m(0) = m0,

where T is the diagonal inertia tensor, T = diag(I1, I2, I3). We assume that
the principal moments of inertia (the diagonal entries of the inertia tensor) are
distinct and in increasing order, i.e. I1 < I2 < I3.

The 2-norm of the angular momentum γ and the energy function E

γ = m(t)Tm(t), E =
1

2
m(t)T (T−1m(t)),

are constant along the solution m(t).

By using the constants of motion it is possible to find the solutions of these equa-
tions by means of the Jacobi elliptic functions. These solutions are implemented
in the code freewR.

a) Implement the mid-point Runge–Kutta implicit integration method to
solve numerically the free rigid body Euler equations.

Find an explicit expression for the Jacobian of the nonlinear system of
equations to be solved at each time-step, and make a Matlab function im-
plementing this Jacobian. Use the Jacobian in a Newton iteration method
to solve the nonlinear system. Provide numerical evidence that the mid-
point method has order 2: compare the solution given by the mid-point
method for different values of h and the solution obtained using the Jacobi
elliptic functions. Choose [0, 1] as time interval.

b) Use now one of the built-in Matlab routines for the numerical solution of
ordinary differential equations to solve the free rigid body Euler equations.
Integrate on relatively large time intervals. Compute and plot the error
in γ and E as a function of time for the midpoint method, for the Matlab
ode-routine, and for the solution computed using Jacobi elliptic functions.
What do you observe? How is this error affected by the tolerances used
in the methods?

c) Perform finally some tests for different values of the principal moments of
inertia. The inertia values dictate the shape of the rigid body. How do
these values influence the performance of the methods?


