Contact during the exam:
Elena Celledoni, tlf. 73593541, cell phone 48238584

Exam in TMA4215

August 17th 2011, Time: 9:00-13:00

Hjelpemidler code C: Textbook Kincaid and Cheney, Numerical Analysis, third edition. TMA4215 lecture notes (39 pages).

Problem 1

a) Is the following function a natural cubic spline?

$$
S(x)= \begin{cases}x^{3}-1 & x \in\left[-1, \frac{1}{2}\right] \\ 3 x^{3}-1 & x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Justify your answer.
b) What values of (a, b, c, d) make the following a cubic spline?

$$
f(x)= \begin{cases}x^{3} & x \in[-1,0] \\ a+b x+c x^{2}+d x^{3} & x \in[0,1]\end{cases}
$$

Problem 2

a) Find the first two polynomials orthogonal with respect to the inner product

$$
\langle f, g\rangle_{w}=\int_{0}^{1} w(x) f(x) g(x) d x
$$

where $w(x)=x$ in $[0,1]$ is the weight function. Verify that the third orthogonal polynomial is

$$
P_{2}(x)=\sqrt{3}\left(10 x^{2}-12 x+3\right)
$$

Note that we have chosen the normalization $\left\langle P_{2}, P_{2}\right\rangle_{w}=1$, use the same normalization for the other two polynomials P_{0} and P_{1}.
b) Find a quadrature formula of the form

$$
\int_{0}^{1} x f(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
$$

with $n=1$, that is exact for all polynomials of degree 3 .
c) Use this formula to approximate the integral

$$
\int_{0}^{1} x \sin (x) d x
$$

Compute the error subtracting the resulting approximation from the exact integral.

Problem 3

a) We want to find the local error σ_{n+1} of the method

$$
y_{n+1}=y_{n}+\frac{1}{2} h\left(f\left(y_{n}\right)+f\left(y_{n}+h f\left(y_{n}\right)\right)\right),
$$

for the numerical solution of the autonomous, scalar initial value problem $y^{\prime}(t)=f(y(t))$, with $y(0)=y_{0}$, and where $h=t_{n+1}-t_{n}$.
We use the following definition of the local truncation error

$$
\sigma_{n+1}=y\left(t_{n+1}\right)-z_{n+1},
$$

with z_{n+1} defined by

$$
z_{n+1}=y\left(t_{n}\right)+\frac{1}{2} h\left(f\left(y\left(t_{n}\right)\right)+f\left(y\left(t_{n}\right)+h f\left(y\left(t_{n}\right)\right)\right)\right.
$$

and it is sufficient to investigate the case $n=0$.
Explain how we obtain the following expression for σ_{1}

$$
\sigma_{1}=h^{3}\left(C_{1} f^{\prime \prime}\left(y_{0}\right)\left[f\left(y_{0}\right)\right]^{2}+C_{2}\left[f^{\prime}\left(y_{0}\right)\right]^{2} f\left(y_{0}\right)\right)+\mathcal{O}\left(h^{4}\right)
$$

find the constants C_{1} and $C_{2}{ }^{1}$.
b) We will use the method for the numerical solution of the initial value problem

$$
y^{\prime \prime}=y^{\prime} y, \quad y(0)=1, \quad y^{\prime}(0)=0.5 .
$$

Reformulate the problem into a system of first order differential equations. Do one step with the proposed method to find the numerical approximations to $y(0.1)$ and $y^{\prime}(0.1)$.

[^0]
[^0]: ${ }^{1}$ If one considers $f: \mathbf{R} \rightarrow \mathbf{R}$, then $f^{\prime}(y)=\frac{d}{d y} f(y)$ and $f^{\prime \prime}(y)=\frac{d^{2}}{d y^{2}} f(y)$. Otherwise for $f: \mathbf{R}^{k} \rightarrow \mathbf{R}^{k}, f^{\prime}(y)$ is the Jacobian of f and $f^{\prime \prime}$ is the second differential.

