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Solution 1

Task 1

a) We would like to show that the error satisfies

lim
k→∞

|ek+1|
|ek|q

= C.

i) The zero x? = arccos 0.5 ≈ 1.0471975512, and

k xk |ek| |ek+1|/|ek| |ek+1|/|ek|2
0 0.5000000000 5.47 · 10−1 4.39 · 10−1 0.803
1 1.2875729002 2.40 · 10−1 4.44 · 10−2 0.185
2 1.0578736992 1.07 · 10−2 3.03 · 10−3 0.283
3 1.0472298506 3.23 · 10−5 9.32 · 10−6 0.287
4 1.0471975514 3.01 · 10−10 8.69 · 10−11 0.287
5 1.0471975512 2.62 · 10−20 7.56 · 10−21 0.287
6 1.0471975512 1.98 · 10−40

As expected, we have quadratic convergence, i.e. q = 2, with C = 0.287 (in this case,
the calculations have been done in Maple with accuracy of over 50 digits).

ii) The zero x? = 0, and

k xk |ek| |ek+1|/|ek| |ek+1|/|ek|2
1 0.5000000000 5.00 · 10−1 0.54 3.69
2 0.2707470413 2.71 · 10−1 0.52 7.07
3 0.1414747338 1.41 · 10−1 0.51 13.81
4 0.0724047358 7.24 · 10−2 0.51 27.29
5 0.0366392002 3.66 · 10−2 0.50 54.26
6 0.0184314669 1.84 · 10−2 0.50 108.18
7 0.0092440432 9.24 · 10−3 0.50 216.02
8 0.0046291426 4.63 · 10−3 0.50 431.71
9 0.0023163571 2.32 · 10−3 0.50 863.09
10 0.0011586257 1.16 · 10−3

In this case the convergence is linear, with constant C = 0.5. This is caused by f ′(0)
being zero, so the condition for quadratic convergence is not satisfied. Instead, using
g(x) = x− f(x)/f ′(x), we get

g′(x) =
f(x)f ′′(x)

[f ′(x)]2
−−−→
x→0

1

2
,

see equation (5) p. 105 in K&C. This is in accordance with the measured results.
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iii) The zero x? = 0, and

k xk |ek| |ek+1|/|ek| |ek+1|/|ek|2
1 0.5000000000 5.00 · 10−1 0.66 3.02
2 0.3309759368 3.31 · 10−1 0.66 4.55
3 0.2199738473 2.20 · 10−1 0.67 6.83
4 0.1464514253 1.46 · 10−1 0.67 10.25
5 0.0975760249 9.76 · 10−2 0.67 15.38
6 0.0650334672 6.50 · 10−2 0.67 23.07
7 0.0433505497 4.34 · 10−2 0.67 34.60
8 0.0288988576 2.89 · 10−2 0.67 51.91
9 0.0192654581 1.93 · 10−2 0.67 77.86
10 0.0128435063 1.28 · 10−2

This time the convergence is linear with C = 0.67. The reason is the same as in ii).

b) i) x? = arccos(0.5) = π/3, f ′(x?) = −
√
3/2, so this zero has multiplicity 1.

ii) x? = 0, and f ′(0) = 0, f ′′(0) = 1. The zero has multiplicity 2.
iii) x? = 0, and f ′(0) = f ′′(0) = 0, f ′′′(0) = 3. This zero has multiplicity 3.

c) From the definition of multiplicity in the text, we can write

µ(x) =
(x− x?)mq(x)

m(x− x?)m−1q(x) + (x− x?)mq′(x)
= (x− x?) q(x)

mq(x)− (x− x?)q′(x)
.

So x? is a simple zero of µ(x) since q(x?) 6= 0. We find Newton’s method applied to µ(x)
as

g(x) = x− µ(x)

µ′(x)
= x− f(x)f ′(x)

[f ′(x)]2 − f(x)f ′′(x)
,

which converges quadratically.

d) You may do this task yourself. Notice that rounding errors can be a problem here, since
f(x) and f ′(x) both tend to zero when xk tends to x?.

e) This task is similar enough to Newton’s method that you should be able to do it on your
own.

Task 2

a) We rewrite the system of equations as

F (X) =

[
f1(x1, x2)
f2(x1, x2)

]
=

[
x21 + x22 − 1
x31 − x2

]
= 0,

where X = (x1, x2)
T . The Jacobian matrix becomes

J(X) =

[
∂f1/∂x1 ∂f1/∂x2
∂f2/∂x1 ∂f2/∂x2

]
=

[
2x1 2x2
3x21 −1

]
.
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We can then write Newton’s method as

X(n+1) = X(n) +H(n),

where H(n) is implicitly given by

J(X(n))H(n) = −F (X(n)). (1)

In our case we can easily calculate J−1 (e.g. in Maple), which leads to the iteration[
x1
x2

]
7→ 1

2x1(1 + 3x1x2)

[
x21 + 4x31x2 + x22 + 1
x21(3x

2
2 − x21 + 3)

]
.

Calculating J−1 as we have done will normally be very cumbersome. Instead one usually
solves (1) numercally, e.g. with the conjugate gradient method. Matlab does this for us
if we solve (1) using the \ operator.

We must avoid initial values where the Jacobian is singular, i.e. when det
(
J(X)

)
= 0:

det
(
J(X)

)
= −2x1 − 6x21x2 = −2x1(1 + 3x1x2) = 0.

Thus, we must keep away from the curves x1 = 0 and 3x1x2 = −1, and choose initial
values x1 = x2 = 0.5. After one iteration we get x1 = 1 and x2 = 0.5. After two
iterations we get x1 = 0.85 and x2 = 0.55.

b) See the Matlab programs on the homepage.

c) As we saw in a), the Jacobian is singular on the x1 axis. This causes the algorithm to
fail, since we don’t get a unique solution when solving (1).

Task 3

a) We start with the 2× 2 case, and write

A =

[
a11 a12
a21 a22

]
F =

[
f11 f12
f21 f22

]
Now,

det(A+ εF ) = (a11 + εf11)(a22 + εf22)− (a12 + εf12)(a21 + εf21)

= (a11a22 − a12a21) + ε(a11f22 + a22f11 − a12f21 − a21f12)
+ ε2(f11f22 − f12f21).

We see that det(A+ εF ) is a polynomial in ε of degree 2. We proceed to prove that if A
and F are N ×N matrices, then det(A+ εF ) is a polynomial of degree N by induction.

3



Assume that if Ã and F̃ are (N −1)× (N −1)-matrices, then det(Ã+εF̃ ) is a polynomial
of degree N − 1 in ε. We regard the N ×N -matrices A and F . Expand the determinant
of B = A+ εF by Laplace’ formula. 1

detB = b11Cof(b11)− b12Cof(b12) + · · ·+ (−1)1+Nb1NCof(b1N )

= (a11 + εf11)Cof(b11)− · · ·+ (−1)1+N (a1N + εf1N )Cof(b1N )

The cofactors Cof(bij) are the determinants of the matrices which arise from removing
row i and coloumn j from B. These matrices are (N − 1) × (N − 1)-matrices on the
form Ã+ εF̃ , so by the induction hypothesis, they are polynomials in ε of degree N − 1.
Thus each term in the sum above is a polynomial of degree N , and detB = det(A+ εF )
is as well.

We also note that if we set ε = 0, detB = detA. Polynomials are continuous, so if
detA 6= 0, there exists a δ > 0 such that detA+ εF 6= 0 for all 0 < ε < δ.

b) From Cramer’s rule,

xi(ε) =
Di(ε)

D(ε)
, i = 1, . . . , N,

where D(ε) = det(A+εF ) and Di(ε) is the determinant of the matrix formed by replacing
coloumn i of A+ εF with b+ εv. We see that these matrices are of the form considered
in a), and are as such degree N polynomials in ε. In a) we also proved that D(ε) 6= 0
for small ε, so xi(ε) are continuosu and og differentiable for small ε.

1Also known as cofactorexpansion.
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