TMA4215 Numerical Mathematics

Autumn 2011

Solution 1

Task 1

a) We would like to show that the error satisfies

$$
\lim _{k \rightarrow \infty} \frac{\left|e_{k+1}\right|}{\left|e_{k}\right|^{q}}=C
$$

i) The zero $x^{\star}=\arccos 0.5 \approx 1.0471975512$, and

k	x_{k}	$\left\|e_{k}\right\|$	$\left\|e_{k+1}\right\| /\left\|e_{k}\right\|$	$\left\|e_{k+1}\right\| /\left\|e_{k}\right\|^{2}$
0	0.5000000000	$5.47 \cdot 10^{-1}$	$4.39 \cdot 10^{-1}$	0.803
1	1.2875729002	$2.40 \cdot 10^{-1}$	$4.44 \cdot 10^{-2}$	0.185
2	1.0578736992	$1.07 \cdot 10^{-2}$	$3.03 \cdot 10^{-3}$	0.283
3	1.0472298506	$3.23 \cdot 10^{-5}$	$9.32 \cdot 10^{-6}$	0.287
4	1.0471975514	$3.01 \cdot 10^{-10}$	$8.69 \cdot 10^{-11}$	0.287
5	1.0471975512	$2.62 \cdot 10^{-20}$	$7.56 \cdot 10^{-21}$	0.287
6	1.0471975512	$1.98 \cdot 10^{-40}$		

As expected, we have quadratic convergence, i.e. $q=2$, with $C=0.287$ (in this case, the calculations have been done in Maple with accuracy of over 50 digits).
ii) The zero $x^{\star}=0$, and

k	x_{k}	$\left\|e_{k}\right\|$	$\left\|e_{k+1}\right\| /\left\|e_{k}\right\|$	$\left\|e_{k+1}\right\| /\left\|e_{k}\right\|^{2}$
1	0.5000000000	$5.00 \cdot 10^{-1}$	0.54	3.69
2	0.2707470413	$2.71 \cdot 10^{-1}$	0.52	7.07
3	0.1414747338	$1.41 \cdot 10^{-1}$	0.51	13.81
4	0.0724047358	$7.24 \cdot 10^{-2}$	0.51	27.29
5	0.0366392002	$3.66 \cdot 10^{-2}$	0.50	54.26
6	0.0184314669	$1.84 \cdot 10^{-2}$	0.50	108.18
7	0.0092440432	$9.24 \cdot 10^{-3}$	0.50	216.02
8	0.0046291426	$4.63 \cdot 10^{-3}$	0.50	431.71
9	0.0023163571	$2.32 \cdot 10^{-3}$	0.50	863.09
10	0.0011586257	$1.16 \cdot 10^{-3}$		

In this case the convergence is linear, with constant $C=0.5$. This is caused by $f^{\prime}(0)$ being zero, so the condition for quadratic convergence is not satisfied. Instead, using $g(x)=x-f(x) / f^{\prime}(x)$, we get

$$
g^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}} \underset{x \rightarrow 0}{ } \frac{1}{2}
$$

see equation (5) p. 105 in K\&C. This is in accordance with the measured results.
iii) The zero $x^{\star}=0$, and

k	x_{k}	$\left\|e_{k}\right\|$	$\left\|e_{k+1}\right\| /\left\|e_{k}\right\|$	$\left\|e_{k+1}\right\| / /\left.e_{k}\right\|^{2}$
1	0.5000000000	$5.00 \cdot 10^{-1}$	0.66	3.02
2	0.3309759368	$3.31 \cdot 10^{-1}$	0.66	4.55
3	0.2199738473	$2.20 \cdot 10^{-1}$	0.67	6.83
4	0.1464514253	$1.46 \cdot 10^{-1}$	0.67	10.25
5	0.0975760249	$9.76 \cdot 10^{-2}$	0.67	15.38
6	0.0650334672	$6.50 \cdot 10^{-2}$	0.67	23.07
7	0.0433505497	$4.34 \cdot 10^{-2}$	0.67	34.60
8	0.0288988576	$2.89 \cdot 10^{-2}$	0.67	51.91
9	0.0192654581	$1.93 \cdot 10^{-2}$	0.67	77.86
10	0.0128435063	$1.28 \cdot 10^{-2}$		

This time the convergence is linear with $C=0.67$. The reason is the same as in $i i)$.
b) i) $x^{\star}=\arccos (0.5)=\pi / 3, f^{\prime}\left(x^{\star}\right)=-\sqrt{3} / 2$, so this zero has multiplicity 1 .
ii) $x^{\star}=0$, and $f^{\prime}(0)=0, f^{\prime \prime}(0)=1$. The zero has multiplicity 2 .
iii) $x^{\star}=0$, and $f^{\prime}(0)=f^{\prime \prime}(0)=0, f^{\prime \prime \prime}(0)=3$. This zero has multiplicity 3 .
c) From the definition of multiplicity in the text, we can write

$$
\mu(x)=\frac{\left(x-x^{\star}\right)^{m} q(x)}{m\left(x-x^{\star}\right)^{m-1} q(x)+\left(x-x^{\star}\right)^{m} q^{\prime}(x)}=\left(x-x^{\star}\right) \frac{q(x)}{m q(x)-\left(x-x^{\star}\right) q^{\prime}(x)} .
$$

So x^{\star} is a simple zero of $\mu(x)$ since $q\left(x^{\star}\right) \neq 0$. We find Newton's method applied to $\mu(x)$ as

$$
g(x)=x-\frac{\mu(x)}{\mu^{\prime}(x)}=x-\frac{f(x) f^{\prime}(x)}{\left[f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)},
$$

which converges quadratically.
d) You may do this task yourself. Notice that rounding errors can be a problem here, since $f(x)$ and $f^{\prime}(x)$ both tend to zero when x_{k} tends to x^{\star}.
e) This task is similar enough to Newton's method that you should be able to do it on your own.

Task 2

a) We rewrite the system of equations as

$$
F(X)=\left[\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right) \\
f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{2}+x_{2}^{2}-1 \\
x_{1}^{3}-x_{2}
\end{array}\right]=0
$$

where $X=\left(x_{1}, x_{2}\right)^{T}$. The Jacobian matrix becomes

$$
J(X)=\left[\begin{array}{ll}
\partial f_{1} / \partial x_{1} & \partial f_{1} / \partial x_{2} \\
\partial f_{2} / \partial x_{1} & \partial f_{2} / \partial x_{2}
\end{array}\right]=\left[\begin{array}{cc}
2 x_{1} & 2 x_{2} \\
3 x_{1}^{2} & -1
\end{array}\right]
$$

We can then write Newton's method as

$$
X^{(n+1)}=X^{(n)}+H^{(n)}
$$

where $H^{(n)}$ is implicitly given by

$$
\begin{equation*}
J\left(X^{(n)}\right) H^{(n)}=-F\left(X^{(n)}\right) \tag{1}
\end{equation*}
$$

In our case we can easily calculate J^{-1} (e.g. in Maple), which leads to the iteration

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \mapsto \frac{1}{2 x_{1}\left(1+3 x_{1} x_{2}\right)}\left[\begin{array}{c}
x_{1}^{2}+4 x_{1}^{3} x_{2}+x_{2}^{2}+1 \\
x_{1}^{2}\left(3 x_{2}^{2}-x_{1}^{2}+3\right)
\end{array}\right]
$$

Calculating J^{-1} as we have done will normally be very cumbersome. Instead one usually solves (1) numercally, e.g. with the conjugate gradient method. MATLAB does this for us if we solve (1) using the \backslash operator.
We must avoid initial values where the Jacobian is singular, i.e. when $\operatorname{det}(J(X))=0$:

$$
\operatorname{det}(J(X))=-2 x_{1}-6 x_{1}^{2} x_{2}=-2 x_{1}\left(1+3 x_{1} x_{2}\right)=0
$$

Thus, we must keep away from the curves $x_{1}=0$ and $3 x_{1} x_{2}=-1$, and choose initial values $x_{1}=x_{2}=0.5$. After one iteration we get $x_{1}=1$ and $x_{2}=0.5$. After two iterations we get $x_{1}=0.85$ and $x_{2}=0.55$.
b) See the Matlab programs on the homepage.
c) As we saw in a), the Jacobian is singular on the x_{1} axis. This causes the algorithm to fail, since we don't get a unique solution when solving (1).

Task 3

a) We start with the 2×2 case, and write

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
& F=\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]
\end{aligned}
$$

Now,

$$
\begin{aligned}
\operatorname{det}(A+\varepsilon F)= & \left(a_{11}+\varepsilon f_{11}\right)\left(a_{22}+\varepsilon f_{22}\right)-\left(a_{12}+\varepsilon f_{12}\right)\left(a_{21}+\varepsilon f_{21}\right) \\
= & \left(a_{11} a_{22}-a_{12} a_{21}\right)+\varepsilon\left(a_{11} f_{22}+a_{22} f_{11}-a_{12} f_{21}-a_{21} f_{12}\right) \\
& +\varepsilon^{2}\left(f_{11} f_{22}-f_{12} f_{21}\right)
\end{aligned}
$$

We see that $\operatorname{det}(A+\varepsilon F)$ is a polynomial in ε of degree 2 . We proceed to prove that if A and F are $N \times N$ matrices, then $\operatorname{det}(A+\varepsilon F)$ is a polynomial of degree N by induction.

Assume that if \tilde{A} and \tilde{F} are $(N-1) \times(N-1)$-matrices, then $\operatorname{det}(\tilde{A}+\varepsilon \tilde{F})$ is a polynomial of degree $N-1$ in ε. We regard the $N \times N$-matrices A and F. Expand the determinant of $B=A+\varepsilon F$ by Laplace' formula. ${ }^{1}$

$$
\begin{aligned}
\operatorname{det} B & =b_{11} \operatorname{Cof}\left(b_{11}\right)-b_{12} \operatorname{Cof}\left(b_{12}\right)+\cdots+(-1)^{1+N} b_{1 N} \operatorname{Cof}\left(b_{1 N}\right) \\
& =\left(a_{11}+\varepsilon f_{11}\right) \operatorname{Cof}\left(b_{11}\right)-\cdots+(-1)^{1+N}\left(a_{1 N}+\varepsilon f_{1 N}\right) \operatorname{Cof}\left(b_{1 N}\right)
\end{aligned}
$$

The cofactors $\operatorname{Cof}\left(b_{i j}\right)$ are the determinants of the matrices which arise from removing row i and coloumn j from B. These matrices are $(N-1) \times(N-1)$-matrices on the form $\tilde{A}+\varepsilon \tilde{F}$, so by the induction hypothesis, they are polynomials in ε of degree $N-1$. Thus each term in the sum above is a polynomial of degree N, and $\operatorname{det} B=\operatorname{det}(A+\varepsilon F)$ is as well.

We also note that if we set $\varepsilon=0, \operatorname{det} B=\operatorname{det} A$. Polynomials are continuous, so if $\operatorname{det} A \neq 0$, there exists a $\delta>0$ such that $\operatorname{det} A+\varepsilon F \neq 0$ for all $0<\varepsilon<\delta$.
b) From Cramer's rule,

$$
x_{i}(\varepsilon)=\frac{D_{i}(\varepsilon)}{D(\varepsilon)}, \quad i=1, \ldots, N
$$

where $D(\varepsilon)=\operatorname{det}(A+\varepsilon F)$ and $D_{i}(\varepsilon)$ is the determinant of the matrix formed by replacing coloumn i of $A+\varepsilon F$ with $b+\varepsilon v$. We see that these matrices are of the form considered in a), and are as such degree N polynomials in ε. In a) we also proved that $D(\varepsilon) \neq 0$ for small ε, so $x_{i}(\varepsilon)$ are continuosu and og differentiable for small ε.

[^0]
[^0]: ${ }^{1}$ Also known as cofactorexpansion.

