TMA4215 Numerical Mathematics

Autumn 2011

Solution 2

Task 1

We consider the sequence specified in Definition 1.4 with $\varepsilon_{k}=\left|x_{k}-0\right|=x_{k}$.

$$
\begin{aligned}
\frac{x_{k+1}}{x_{k}} & =\frac{2^{-(k+1)^{\alpha}}}{2^{-k^{\alpha}}} \\
& =2^{k^{\alpha}-(k+1)^{\alpha}}
\end{aligned}
$$

We consider the exponent and rewrite it by the generalized binomial series

$$
\begin{aligned}
k^{\alpha}-(k+1)^{\alpha} & =k^{\alpha}-k^{\alpha}\left(1+\frac{1}{k}\right)^{\alpha} \\
& =k^{\alpha}-k^{\alpha}\left(1+\alpha k^{-1}+\binom{\alpha}{2} k^{-2}+\cdots\right) \\
& =-\alpha k^{\alpha-1}-\binom{\alpha}{2} k^{\alpha-2}-\cdots
\end{aligned}
$$

The series converges for $k>1$, and we see that the dominating term when $k \rightarrow \infty$ is $-\alpha k^{\alpha-1}$. Therefore

$$
\lim _{k \rightarrow \infty} k^{\alpha}-(k+1)^{\alpha}= \begin{cases}0, & \alpha<1 \\ -1, & \alpha=1 \\ -\infty & \alpha>1\end{cases}
$$

Since 2^{x} is continuous for all $x \in \mathbb{R}$ and $\lim _{x \rightarrow-\infty} 2^{x}=0$,

$$
\mu=\lim _{k \rightarrow \infty} \frac{x_{k+1}}{x_{k}}= \begin{cases}1, & \alpha<1 \\ \frac{1}{2}, & \alpha=1 \\ 0, & \alpha>1\end{cases}
$$

According to the definition, the $\left(x_{k}\right)$ converges sublinearly when $\alpha<1$, linearly when $\alpha=1$ and superlinearly when $\alpha>1$

Task 2

From the note on nonlinear equations, we know that it is sufficient to show the two conditions

$$
\begin{align*}
& G(D) \subseteq D \tag{1}\\
& \max _{i} \sum_{j=1}^{3} \bar{g}_{i j}<1, \quad \text { where } \quad\left|\frac{\partial g_{i}}{\partial x_{j}}(x)\right| \leq \bar{g}_{i j} \quad \text { for } x \in D \tag{2}
\end{align*}
$$

It is relatively easy to see that

$$
\begin{aligned}
& g_{1}\left(1,1, x_{3}\right) \approx 0.34<g_{1}\left(x_{1}, x_{2}, x_{3}\right) \leq 0.5=g_{1}\left(0, x_{2}, x_{3}\right) \\
& g_{2}\left(0, x_{2},-1\right) \approx-0.048<g_{2}\left(x_{1}, x_{2}, x_{3}\right)<0.09 \approx g_{2}\left(1, x_{2}, 1\right) \\
& g_{3}\left(-1,1, x_{3}\right) \approx-0.61<g_{3}\left(x_{1}, x_{2}, x_{3}\right)<-0.49 \approx g_{2}\left(1,1, x_{3}\right)
\end{aligned}
$$

so (1) is satisfied. Likewise, we can show that

$$
\begin{array}{lll}
\left|\frac{\partial g_{1}}{\partial x_{1}}\right|<0.281 & & \left|\frac{\partial g_{1}}{\partial x_{2}}\right|<0.281 \\
\left|\frac{\partial g_{2}}{\partial x_{1}}\right|<0.067 & \left|\frac{\partial g_{1}}{\partial x_{2}}\right|=0 & \left|\frac{\partial g_{2}}{\partial x_{3}}\right|<0.119 \\
\left|\frac{\partial g_{3}}{\partial x_{1}}\right|<0.136 & \left|\frac{\partial g_{3}}{\partial x_{2}}\right|<0.136 & \left|\frac{\partial g_{3}}{\partial x_{3}}\right|=0
\end{array}
$$

for all $x \in D$. This means that

$$
\max _{i} \sum_{j=1}^{3} \bar{g}_{i j}=\max \{0.562,0.186,0.272\}=0.562<1
$$

so condition $\sqrt{2}$ is also satisfied. Test this numerically yourself.

Task 3

The fixed point iterations are given by

$$
\begin{aligned}
x_{1}^{(k+1)} & =\sqrt[3]{x_{2}^{(k)}} & x_{1}^{(k+2)}=\sqrt[6]{1-\left[x_{1}^{(k)}\right]^{2}} \\
x_{2}^{(k+1)} & =\sqrt{1-\left[x_{1}^{(k)}\right]^{2}} & x_{2}^{(k+2)}=\sqrt{1-\left[x_{2}^{(k)}\right]^{2 / 3}}
\end{aligned}
$$

so we can view this as fixed point iterations on two scalar equations:

$$
x=g_{1}(x)=\sqrt[6]{1-x^{2}}, \quad x=g_{2}(x)=\sqrt{1-x^{2 / 3}}
$$

Start by locating the fixed points. This is easily done graphically:

This shows that g_{1} has a fixed point near 0.8 , and g_{2} one near 0.5 . For each of these, we must now find an interval $[a, b]$ so that $i) g_{i}([a, b]) \subseteq[a, b]$ and $\left.i i\right)\left|g_{i}^{\prime}(x)\right|<1$ for $x \in[a, b]$.

Let us look at g_{1} first. We see that

$$
g_{1}^{\prime}(x)=-\frac{x}{3\left(1-x^{2}\right)^{5 / 6}}, \quad\left|g^{\prime}(x)\right|<1 \text { for } 0 \leq x \leq 0.87 .
$$

But this interval does not satisfy i. However, g_{1} is monotonically decreasing. After a little trial and error, we find

$$
g_{1}([0.76,0.87]) \subseteq[0.76,0.87] .
$$

Similarly, we can show that the two conditions are satisfied for g_{2} on the interval $[0.22,0.80]$. Thus, we have proven that the equation has a unique fixed point in the region

$$
D=\left\{x \in \mathbb{R}^{2}: 0.76 \leq x_{1} \leq 0.87,0.22 \leq x_{2} \leq 0.80\right\}
$$

and the iterations converge for all starting values in this region.

Task 4

Rewrite the iteration scheme on the form

$$
Q \mathbf{x}^{(k+1)}=(Q-A) \mathbf{x}^{(k)}+b
$$

with

$$
Q=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & -4
\end{array}\right], \quad(Q-A)=\left[\begin{array}{ccc}
-1 & -1 & 1 \\
2 & 1 & -1 \\
-1 & 1 & -1
\end{array}\right], \quad \text { and } \quad b=\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]
$$

and $\mathbf{x}^{(k)}=\left[x_{k}, y_{k}, z_{k}\right]^{T}$. Find $T=Q^{-1}(Q-A)$ og A, and show $\|T\|_{\infty}=0.75$. Thus the iteration scheme converges for all starting values. Further, $\lim _{k \rightarrow \infty} \mathbf{x}^{(k)}=\mathbf{x}$, where \mathbf{x} is the solution of $A \mathbf{x}=b$. The exact solution in this case is $\boldsymbol{x}=[1 / 9,1 / 9,-4 / 3]$. You can find this by iterating until convergence, or by solving the system using Gaussian elimination.
By the use of theorem 1.1 from the note on nonlinear equations, using $D=\mathbb{R}^{3}$ and $L=\|T\|_{\infty}$ we get

$$
\left\|\mathbf{x}^{(k)}-\mathbf{x}\right\|_{\infty} \leq \frac{\|T\|_{\infty}}{1-\|T\|_{\infty}}\left\|\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right\|_{\infty}
$$

or

$$
\left\|\mathbf{x}^{(k)}-\mathbf{x}\right\|_{\infty} \leq \frac{\|T\|_{\infty}^{k}}{1-\|T\|_{\infty}}\left\|\boldsymbol{x}^{(1)}-\mathbf{x}^{(0)}\right\|_{\infty} \leq 10^{-4}
$$

Do one iteration to get $\mathbf{x}^{(1)}$, insert $\|T\|_{\infty}$, and see that $k=37$ is sufficient. Such bounds are almost always very conservative, so in practice less iterations are needed.

Task 5

a)

$$
x^{(1)}=\left[\begin{array}{c}
1.6 \\
0.5 \\
1.26
\end{array}\right], \quad x^{(2)}=\left[\begin{array}{l}
1.08 \\
1.06 \\
1.06
\end{array}\right], \quad x^{(3)}=\left[\begin{array}{c}
0.96 \\
1.03333 \\
0.98267
\end{array}\right]
$$

The iterations seem to converge, which is reasonable since the matrix is strictly diagonally dominant.
b)

$$
x^{(1)}=\left[\begin{array}{c}
1.6 \\
-5.3 \\
-17.3
\end{array}\right], \quad x^{(2)}=\left[\begin{array}{c}
9.20 \\
-115.1 \\
-339.1
\end{array}\right], \quad x^{(3)}=\left[\begin{array}{c}
153.07 \\
-2155.7 \\
-6317.0
\end{array}\right]
$$

The iterations diverge. The spectral radius of the iteration matrix can be found to be $\rho(T)=18.58$ using Matlab, so divergence is reasonable.
Notice that the equations are the same, they are only permuted.

Task 6

See the suggested solution to the exam.

