TMA4215 Numerical Mathematics

Autumn 2011

Exercise 2

Task 1

Consider the sequence

$$
x_{k}=2^{-k^{\alpha}}, \quad k=1,2,3, \ldots
$$

where $\alpha>0$. It is easily seen that

$$
\lim _{k \rightarrow \infty} x_{k}=0
$$

Use Definition 1.4 in S\&M and discuss the convergence of $\left(x_{k}\right)$ for different α. When does the sequence converge linearly? Superlinearly? Sublinearly?

Extra: Use Definition 1.7 in S\&M. Does the sequence converge with order $q>1$ for any α ?

Task 2

Given

$$
G(x)=\left(\begin{array}{c}
\frac{1}{3} \cos \left(x_{1} x_{2}\right)+\frac{1}{6} \\
\frac{1}{9} \sqrt{x_{1}^{2}+\sin x_{3}+1.06}-0.1 \\
-\frac{1}{20} \mathrm{e}^{-x_{1} x_{2}}-\frac{10 \pi-3}{60}
\end{array}\right)
$$

Show that the fixed point iterations $x^{(k+1)}=G\left(x^{(k)}\right)$ converge towards a unique fixed point for all starting values $x^{(0)}$ in $D=\left\{x \in \mathbb{R}^{3}:-1 \leq x_{i} \leq 1, i=1,2,3\right\}$.
Verify the result numerically.

Task 3

Consider the system of equations from the exercise 1,

$$
\begin{aligned}
& x_{1}^{2}+x_{2}^{2}=1, \\
& x_{1}^{3}-x_{2}=0 .
\end{aligned}
$$

This has two solutions, one in the region $-1 \leq x_{1}, x_{2} \leq 0$ and one in $0 \leq x_{1}, x_{2} \leq 1$. It is possible to show numerically that the iteration scheme based on the formulation

$$
\begin{aligned}
& x_{1}=\sqrt[3]{x_{2}}, \\
& x_{2}=\sqrt{1-x_{1}^{2}}
\end{aligned}
$$

converges with appropriate starting values.
Explain why. How would you select starting values?
Hint: It is simpler to analyse results if you consider two subsequent iterations as one.

Task 4

Given the iteration scheme:

$$
\begin{aligned}
4 x_{k+1} & =-x_{k}-y_{k}+z_{k}+2 \\
6 y_{k+1} & =2 x_{k}+y_{k}-z_{k}-1 \\
-4 z_{k+1} & =-x_{k}+y_{k}-z_{k}+4
\end{aligned}
$$

Prove that $\mathbf{x}^{(k)}=\left[x_{k}, y_{k}, z_{k}\right]^{T}$ converges to a limit \mathbf{x} for all starting values $\mathbf{x}^{(0)}$ when $k \rightarrow \infty$. What is the limit \mathbf{x} ?

How many iterations are needed to ensure $\left\|\mathbf{x}^{(k)}-\mathbf{x}\right\|_{\infty} \leq 10^{-4}$ if $\mathbf{x}^{(0)}=[0,0,0]^{T}$? Is this number realistic, or do you think that less iterations are needed in practice?

Task 5

Solve the two systems of equations by Gauss-Seidel iterations:

$$
\begin{align*}
3 x+y+z & =5 \\
x+3 y-z & =3 \tag{1}\\
3 x+y-5 z & =-1
\end{align*}
$$

$$
\begin{align*}
3 x+y+z & =5 \\
3 x+y-5 z & =-1 \tag{2}\\
x+3 y-z & =3 .
\end{align*}
$$

Use $[0.1,0.1,0.1]^{T}$ as the starting point. First do a few iterations by hand, and then you can use the Matlab program gs.m.

Comment the results. Do they comply with theory?

Task 6

Exam problem: December 2008, problem 5.

