TMA4215 Numerical Mathematics

Autumn 2011

Exercise 3

Task 1

a) Given $f(x)=\sqrt{1+x}$. Let $x_{0}=0, x_{1}=0.9, x_{2}=0.6$ and $x_{3}=0.4$. Construct the interpolation polynomials of degree 1,2 and 3 for approximating $f(0.45)$. Find the error in each case.
b) Use Theorem 6.2 in S\&M to find an error bound for the approximations to $f(0.45)$ in a).
c) Use the Matlab function lagrange to find the approximations to $f(0.45)$.

Since Matlab now is running, make a plot of $p_{3}(x)$ and $f(x)$ for $x \in[0,0.9]$. What happens if you expand the domain to e.g. $[-0.5,1.5]$?
You may also try adding extra nodes.

Task 2

Check that the polynomials

$$
\begin{aligned}
& p(x)=5 x^{3}-27 x^{2}+45 x-21 \\
& q(x)=x^{4}-5 x^{3}+8 x^{2}-5 x+3
\end{aligned}
$$

both interpolate the points given in the table

$$
\begin{array}{c|c|c|c|c}
x & 1 & 2 & 3 & 4 \\
\hline f(x) & 2 & 1 & 6 & 47
\end{array} .
$$

Why does this not contradict the uniqueness part of Theorem 6.1 in S\&M?

Task 3

Given a set of equidistant nodes, i.e. $x_{k}=a+k h, k=0,1, \ldots, n$, with $h=(b-a) / n$. Let $p_{n}(x)$ be the polynomial of degree n that intepolates a function f in the nodes. The task is about showing the error bound

$$
\begin{equation*}
\left|f(x)-p_{n}(x)\right| \leq \frac{M}{4(n+1)}\left(\frac{b-a}{n}\right)^{n+1} \tag{1}
\end{equation*}
$$

where $M=\max _{x \in[a, b]}\left|f^{(n+1)}(x)\right|$.
Choose an $x \in[a, b]$, and let j be such that $x_{j} \leq x \leq x_{j+1}$. Show the error bound

$$
\prod_{k=0}^{n}\left|x-x_{k}\right| \leq \frac{1}{4} h^{n+1}(j+1)!(n-j)!.
$$

You may draw a figure. It is useful to separate the product in three parts, $k<j, k=j, j+1$ and $k>j+1$, and then find an upper bound for each of these.

Use this to show

$$
\left|\prod_{k=0}^{n}\left(x-x_{k}\right)\right| \leq \frac{1}{4} h^{n+1} n!.
$$

Finally, show (11).

Task 4

Given the function $f(x)=\mathrm{e}^{x} \sin x$ on the interval $[-3,1]$.
a) Show by induction that

$$
f^{(m)}(x)=\frac{d^{m}}{d x^{m}} f(x)=2^{m / 2} \mathrm{e}^{x} \sin (x+m \pi / 4) .
$$

b) Let $p_{n}(x)$ be the polynomial interpolating $f(x)$ in $n+1$ equidistant nodes (including the end points). Find an upper limit for the error expressed using n. To guarantee an error less than 10^{-4}, what must n be? (Use trial and error, or calculate it using MatLaB or Maple).
c) Use Matlab to verify the results in b).

Task 5

This task should be done in Matlab.
The gross domestic production of crude oil in Norway from 1980 to 2008 measured in standard cubic metres $\left(\mathrm{Sm}^{3}\right)$ is provided in Table 1. Find the interpolation polynomial of degree 7 for

Year	Oil production $\left(10^{6} \mathrm{Sm}^{3}\right)$
1980	30.688
1984	43.709
1988	66.882
1992	125.936
1996	177.282
2000	182.126
2004	161.064
2008	113.335

Table 1: Norwegian oil production 1980-2008 (source: Statistics Norway).
the points in the table. Use the polynomial to find an estimate of the oil production in 1990 (for comparison, the oil production that year was $96.844 \cdot 10^{6} \mathrm{Sm}^{3}$). How about forecasts for 2009 and 2010? What advice would you give the politicians?

