TMA4215 Numerical Mathematics

Autumn 2011

Solution 4

Task 1

a) The table of divided differences is $\left(f\left[x_{i}\right]=y_{i}\right)$:

x_{i}	$f\left[x_{i}\right]$	$f\left[x_{i}, x_{i+1}\right]$	$f\left[x_{i}, x_{i+1}, x_{i+2}\right]$
0	1		
2	2	$1 / 2$	$1 / 2$
3	4	2	

and we end up with the polynomial

$$
p_{2}(x)=1+\frac{1}{2} x+\frac{1}{2} x(x-2)=\frac{1}{2} x^{2}-\frac{1}{2} x+1 .
$$

b) We keep the table from a) and just add one more row:

x_{i}	$f\left[x_{i}\right]$	$f\left[x_{i}, x_{i+1}\right]$	$f\left[x_{i}, x_{i+1}, x_{i+2}\right]$	$f\left[x_{i}, x_{i+1}, x_{i+2}, x_{i+3}\right]$
0	1			
2	2	$1 / 2$		
3	4	2	$1 / 2$	$-1 / 2$
1	0	2	0	

The polynomial becomes

$$
p_{3}(x)=1+\frac{1}{2} x+\frac{1}{2} x(x-2)-\frac{1}{2} x(x-2)(x-3)=-\frac{1}{2} x^{3}+3 x^{2}-\frac{7}{2} x+1
$$

Task 2

a) Equidistant nodes: $x_{i}=i h, i=0, \ldots, 3$ with $h=\pi / 3$. We are to interpolate the points in the table

$$
\begin{array}{c|cccc}
x_{i} & 0 & \pi / 3 & 2 \pi / 3 & \pi \\
\hline f\left(x_{i}\right) & 0 & \sqrt{3} / 2 & \sqrt{3} / 2 & 0
\end{array}
$$

Result:

$$
p_{3}(x)=\frac{9 \sqrt{3}}{4 \pi^{2}}\left(-x^{2}+\pi x\right)
$$

with error bound (see Exercise 3, Task 3)

$$
\left|\sin (x)-p_{3}(x)\right| \leq \frac{1}{16}\left(\frac{\pi}{3}\right)^{4} \approx 0.0752
$$

b) The Chebyshev nodes are: $x_{i}=\pi / 2+(\pi / 2) \cos ((2 i+1) \pi / 8)$ when $n=3$. This gives us the table

$$
\begin{array}{c|cccc}
x_{i} & 3.022022903 & 2.171914057 & 0.9696785970 & 0.119569751 \\
\hline f\left(x_{i}\right) & 0.1192850409 & 0.8247039815 & 0.8247039818 & 0.1192850413
\end{array} .
$$

The polynomial is

$$
p_{3}(x)=-0.4043173324 x^{2}+1.270200363 x-0.0268120051
$$

with error bound

$$
\left|\sin (x)-p_{3}(x)\right| \leq \frac{1}{8 \cdot 4!}\left(\frac{\pi}{2}\right)^{4} \approx 3.171 \cdot 10^{-2}
$$

c) We have $M_{n}=\max _{x \in[0, \pi]}\left|f^{(n+1)}(x)\right|=1$.

Equidistant nodes:

$$
\left|f(x)-p_{n}(x)\right| \leq \frac{1}{4(n+1)}\left(\frac{\pi}{n}\right)^{n+1}
$$

Chebyshev nodes: The change of variables leads to

$$
\prod_{i=0}^{n}\left(x-x_{i}\right)=\left(\frac{b-a}{2}\right)^{n+1} \prod_{i=0}^{n}\left(t-t_{i}\right) \quad \Rightarrow \quad \prod_{i=0}^{n}\left|x-x_{i}\right| \leq\left(\frac{b-a}{2}\right)^{n+1} \frac{1}{2^{n}}
$$

so that the error bound becomes

$$
\left|f(x)-p_{n}(x)\right| \leq\left(\frac{\pi}{4}\right)^{n+1} \frac{2}{(n+1)!}
$$

In Figure 1 we see that Chebyshev nodes give lower error bound than equidistant nodes.

Figure 1: Solid: equidistant nodes, dashed: Chebyshev nodes.

Task 3

See the provided Matlab files.

Task 4

In Figure 2 we see that equidistant nodes give catastrophic results when approximating Runge's function. The larger we choose n, the larger displacement we get near -1 and 1 . Chebyshev nodes, on the other hand, give us a good fit in the whole interval, and the larger we choose n, the better the fit.

Figure 2: Top: equidistant nodes, bottom: Chebyshev nodes. Solid: Runge's function, dashed: $n=6$, dashed/dotted: $n=11$, dotted: $n=21$.

Task 5

a) We have $f\left[x_{0}\right]=\Delta^{0} f=f_{0}$ and $f\left[x_{0}, x_{1}\right]=\left(f_{1}-f_{0}\right) / h$, so the assumption is correct for $k=0,1$. We now assume that the hypothesis is correct for some arbitrary k, and are to show that it then also is true for $k+1$. We have:

$$
\begin{aligned}
f\left[x_{0}, \ldots, x_{k}, x_{k+1}\right] & =\frac{f\left[x_{1}, \ldots, x_{k+1}\right]-f\left[x_{0}, \ldots, x_{k}\right]}{x_{k+1}-x_{0}} \\
& =\frac{\frac{1}{k!h^{k}}\left(\Delta^{k} f_{1}-\Delta^{k} f_{0}\right)}{(k+1) h}=\frac{1}{(k+1)!h^{k+1}} \Delta^{k+1} f_{0}
\end{aligned}
$$

b) Since $x=x_{0}+s h$, we have $x_{i}=x_{0}+i h$ so that

$$
\prod_{i=1}^{k-1}\left(x-x_{i}\right)=h^{k} \prod_{i=0}^{k-1}(s-i)=h^{k} k!\binom{s}{k}
$$

c) Insert the results from \mathbf{a}) and \mathbf{b}) into the known formula

$$
p_{n}(x)=\sum_{k=0}^{n} f\left[x_{0}, \ldots, x_{k}\right] \prod_{i=0}^{k-1}\left(x-x_{i}\right)
$$

d) Sort the nodes in increasing order. Then we get the following table of forward differences:

and the polynomial becomes

$$
p(x)=p\left(x_{0}+s h\right)=1-\binom{s}{1}+3\binom{s}{2}-3\binom{s}{3}=1-s+3 \frac{s(s-1)}{2}-3 \frac{s(s-1)(s-2)}{3!},
$$

which is the same polynomial as in Task 1b), since in this case $x_{0}=0$ and $h=1$.

