TMA4215 Numerical Mathematics
Autumn 2011

Solution 5

Task 1
We study Hermite interpolation, which is characterised by a polynomial p(z) defined on n + 1
distinct nodes zg, z1, ..., T, satisfying the conditions

plx;) =y, pl(z)=wv, i=0,1,...,n (1)

where {y;}I*, and {v;}], are arbitrary, specified values.

a) It is reasonable to assume p € Py, 11 since specifies 2n 4 2 conditions (2 conditions for
each of the n 4+ 1 points). A polynomial of degree 2n + 1 can generally be represented by

2 2 2 1
ag + a1 + asx® + - - + a0, 2" + agp 12"t

and thus has 2n + 2 parameters ag, a1, ..., a2,4+1. Hence, we can use the conditions
to uniquely determine these parameters.

b) We assume that the functions A;(z) and B;(z) (which are not specified for now), all
defined for ¢ = 0,1, ..., n, satisfy

) )

for all 4,7 = 0,1,...,n. We define the function g(z) as

n

=Y yidi(@) + > viBi(x). (3)
=0

=0

Note: We have not yet said anything about which type of function A;(x) and B;(x) are,
just that they shall satisfy the conditions .

Given the function g(z) in we find for arbitrary j =0,1,...,n
n n
Zyz x] +Z'U1, i ):Zyz(slj‘i'zvzozyja
=0 =0
n n
Zyz (2 —i—Zvz -):Zyi-O—i-Zvidij:vj.
=0 =0

Thus, we have shown that a function g(z) as defined in satisfies as long as the
basis functions A;(z) and B;(z) satisfy (2).



c)

d)

We will now look at possible representations of the basis functions A;(x) and B;(z).
Specifically, we look at basis functions A; € Py, 11 and B; € Py,+1. We use the cardinal

functions n
T — T
J
Litr) = [[ —*
iy Ti — Tj
JF#i

which satisfy L;(z;) = d;; and study the functions
Aj(w) = (1= 2(x — ) Li(;)) L (x), Bi(z) = (v — ;) L} (x). (4)
It is obvious that A; € P, 11 and B; € Py, 1. Next, we find that
Aj(x) = =2L(2;) L} (x) + 2(1 — 2(x — ;) L(2:)) Li(z) Lj ()
=2L;(x)Lj(z)(1 — Li(z) — 2(z — ;) Lj(z;))
Bl(z) = L¥(z) + 2(z — ;) Li(z) L}(x) = Ll(x)(LZ(.CU) +2(x — xl)L;(x))

)

We see that the polynomials A;(z) and B;(x) satisfy for all i,7 =0,1,...,n. Thus,
the polynomials are polynomials of degree 2n + 1 which satisfy the necessary basis
conditions and can be used as basis functions for construction of polynomials of degree 2n+
1 satisfying conditions (T]).

We shall find a third degree polynomial p(z) satisfying
p(1) =1, p(1)=3, p2) =14, p(2)=24.

In this case 2n +1 =3 = n =1 and we find

-2 -1
:f_sz_x, Li(z)= 2= =

Ly(x) = —1, Ly(z) =
Li(x) = 2 — 4z + 4, Li(x) =2 -2z +1

From the representation we find

Ag(z) = (1—2(z —1)- (-1))(2® — 4z +4) = (22 — 1)(2® — 4o + 4)
Aj(z)=(1-2(x—2)-1)(z® — 2z +1) = (5 — 22)(z* — 22 + 1)
Bo(z) = (z — 1)(2® — 4z + 4)

By(z) = (z — 2)(2* — 2z + 1)

Thus, the third degree polynomial satisfying the conditions above is given by

p(r) = (20 —1)(2* — 4z +4) + 3 (z — 1)(2* — 4z + 4)
+14-(5—22)(2® — 2z + 1) + 24 - (x — 2)(2* — 22 + 1)
=23+ 622 — 122 +6.

The final result follows easily from a little calculation.



Task 2

Let s(z) be a spline function of the given type. Then s(x) is a continuous function which on
the interval I; := [z, 2j41] coincides with some linear function s;(z) = v;(z — x;) + ¢;.

We try and choose 3, ag, a1, ... such that there is equality in each interval I;.

We see that (z — z;)T is zero for < x; and coincides with the line with slope 1 through x;
for > x;. On the interval I},

e (A
so the right hand side of the equality is equal to 8 + ZLO aj(x — x;) on I;.
On Iy we see that for the equality to hold, we need
so(z) = v0(x — x0) + do = B + ao(r — z0),
so we set 8 = dg, ag = Yg-
We proceed by induction and assume that equality holds on I}, i.e.

j
sj(x) =vj(x —z;) + 6 =6+ Zai(:v — xj).
i=0

For equality to hold on I;11 we need
sir1(®) = i1 (T — 1) + 0501 = 85(2) + @i (2 — 2j41)
We know that s;(z;11) = sj41(zj41) since s(x) is continuous, so the linear functions

Vi1 —xj1) + 0541 and s;(2) + jp1(x —xj41) = 05 +vj(r — x5) + aj41(x — xj41) are equal
if they have the same slope. We set a;j11 = vj4+1 — 7; to achieve this.

Task 3

Consider 7 so that |s]| = max;|s}/|, and consider equation 7 in the system of linear equations
used for calculating the natural cubic splines:

hs{_y + 4hs! + hs],; = 6 <fi+1 L fH) .

h h
"

By using that |s}| = max;|s;| and Taylor’s theorem, we have that

4hls]| < hlsi_q| 4 hlsiq | 4+ 61 (mi) = f'(nie)| < 2|8} ]+ 61" (m:) — f'(ni-1)
and thus
hlsi| < 3|f'(mi) — f'(mi-1)l,
with n; € (x4, xiy1), ni—1 € (zi—1,2;). Additionally we have
f'(ni) — f'(ni—

] el < 2] < 20l

so that
|57 | < 6] f" o



Application of the result in task 3

Under the assumptions of task 3, we now want to show the error bound
7 2 1
(@) = s(@)] < gh71f oo (5)
Consider the interval [x;_1,z;], and let Z € (z;_1, ;). Consider the function

g(2) = f(a) — s(a) — TN pay

(i‘ — .%'Z)(i' — xi—l)

We have g(z;) =0, g(x;_1) = 0 and g(Z) = 0, so ¢"(z) has at least one zero & € (z;_1, ;) so

that we get 2
0=f"(&)—s"(&) - (T — ) (T — 2i_1)

(f(@) - 5(2)),

and

1(2) - (@) = T IE 2T (g ey,

Since §”(z) is a linear polynomial on [z;_1, 4], (a straight line between (x;_1,s; ;) and
(z,5])), we have

|s" ()] < max{[s{_y|,[s]]}, Vi.
Also, one can easily show (see exercise 3, task 3) that

h2

(@ —2i)( —zi1)| < -,
which leads to )

|f(z) —s(z)| < §h2(||f”lloo + m?X!S’i’I)-

Together with the result of task 3, this gives ().



