TMA4215 Numerical Mathematics

Autumn 2011

Exercise 6

Task 1

Show that the second column in the Romberg array is the same as what you get by using the composite Simpson's rule.

Task 2

Write a Matlab program that calculates the Romberg array for a given integral. Stop when $|R(n, n)-R(n-1, n-1)| \leq t o l$, where $t o l$ is the tolerance supplied by the user. Test the program on the integrals

$$
\int_{0}^{1} \sin (x) \mathrm{d} x, \quad \int_{0}^{1} \sqrt{x} \sin (x) \mathrm{d} x
$$

Comment the results. (See the exam 2008, problem 2).

Task 3

Construct an adaptive trapezoid algorithm. Apply the algorithm to find the value of the Fresnel integral

$$
S(x)=\int_{0}^{x} \sin \left(t^{2}\right) \mathrm{d} t
$$

for $x=0.8$. Use tol $=2 \cdot 10^{-3}$.

Task 4

a) Find an approximation to the integral

$$
\int_{-1}^{1} \frac{\mathrm{e}^{x}}{\sqrt{1-x^{2}}} \mathrm{~d} x
$$

by using Gaussian quadrature with $n=1$ (two nodes). Use the Gaussian quadrature based on the Legendre polynomials.
b) Find a Gaussian quadrature of the form

$$
\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} \mathrm{~d} x \approx A_{1} f\left(x_{1}\right)+A_{2} f\left(x_{2}\right)
$$

and use this to calculate the integral in a). Compare with the exact solution.
c) Find an upper limit for the error in b).

Task 5

Find the first three Laguerre polynomials, i.e. polynomials that are orthogonal with respect to the inner product

$$
\langle p, q\rangle=\int_{0}^{\infty} \mathrm{e}^{-x} p(x) q(x) \mathrm{d} x
$$

Task 6

Show that the polynomials defined by

$$
\Phi_{k}(x)=\frac{1}{2^{k} k!} \frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}}\left[\left(x^{2}-1\right)^{k}\right]
$$

are orthogonal with respect to the inner product

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) \mathrm{d} x .
$$

Hint: Note that the j-th derivative of $\left(x^{2}-1\right)^{k}$ is divisible by $\left(x^{2}-1\right)$ if $j<k$. Use partial integration repeatedly.

Relevant exam problems:

- December 2008, problem 3,
- December 2007, problem 3,
- December 2006, problem 2,
- August 2006, problem 3.

