TMA4215 Numerical Mathematics

Autumn 2011

Exercise 7

Task 1

Given an ordinary differential equation

$$
\begin{equation*}
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}, \quad t_{0} \leq t \leq t_{\mathrm{end}} \tag{1}
\end{equation*}
$$

You can assume that f satisfies the Lipschitz condition

$$
\|f(t, y)-f(t, \tilde{y})\| \leq L\|y-\tilde{y}\|
$$

A one-step method for solving this differential equation can be described by

$$
\begin{equation*}
y_{n+1}=y_{n}+h \Phi\left(t_{n}, y_{n} ; h\right), \quad n=0,1, \ldots, N-1, \quad h=\frac{t_{\mathrm{end}}-t_{0}}{N} \tag{2}
\end{equation*}
$$

Assume the following:

- The local truncation error given by

$$
d_{n+1}=y\left(t_{n+1}\right)-y\left(t_{n}\right)-h \Phi\left(t_{n}, y\left(t_{n}\right) ; h\right)
$$

satisfies

$$
\left\|d_{n+1}\right\| \leq D h^{p+1}
$$

where D is a positive constant.

- The function Φ is Lipschitz continuous, with Lipschitz constant M, i.e.

$$
\begin{equation*}
\left\|\Phi\left(t_{n}, y ; h\right)-\Phi\left(t_{n}, \tilde{y} ; h\right)\right\| \leq M\|y-\tilde{y}\| \tag{3}
\end{equation*}
$$

a) Show that in this case, the global error in $t_{\text {end }}$ satisfies

$$
\left\|e_{N}\right\|=\left\|y\left(t_{\mathrm{end}}\right)-y_{N}\right\| \leq C h^{p}
$$

where C is a positive constant depending on M, D and the interval $t_{\text {end }}-t_{0}$.
b) Assume that a two-stage explicit Runge-Kutta method given by the Butcher tableau

0		
c_{2}	c_{2}	
	b_{1}	b_{2}

is used to solve (1). Show that the method can be written on the form (2). Now assume that $h \leq h_{\max }$ and show that Φ satisfies the Lipschitz condition in y, with Lipschitz constant M that depends on the method coefficients c_{2}, b_{1} and b_{2}, as well as L and $h_{\max }$.

Task 2

The Duffing oscillator is a much studied mathematical model. This can be described by the initial value problem

$$
\begin{equation*}
u^{\prime \prime}+k u^{\prime}-u\left(1-u^{2}\right)=A \cos (\omega t) . \tag{4}
\end{equation*}
$$

In 1918, G. Duffing used this equation to describe a thin, flexible metal bar oscillating near an electromagnet. The constant k is the damping, while ω and A are the frequency and the amplitude of the driving force from the electromagnet respectively. See http://www.mcasco.com/ pattr1.html for more details.

a) Start by transforming (4) to a system of two first-order differential equations.
b) Calculate by hand (you are allowed to use a calculator) a single step with the improved Euler method (also known as Heun's method), setting $k=0.25, A=0.4, \omega=1.0$, $u(0)=0, u^{\prime}(0)=0$, and using step length $h=0.1$.
c) Implement the improved Euler method in Matlab and use it to solve (4).
d) Create a plot of the first component u along the x-axis and the second component u^{\prime} along the y-axis (this is called a phase plot). Start with the same parameters as in \mathbf{b}), but vary them and see what happens. You may use $h=0.01$. Try integrating over quite long time intervals.
e) Try several different initial values and plot the resulting integral curves to get a picture of what the curves look like. You can use the same values as above for $k=0.25, A=0.4$, $\omega=1.0$.
f) Finally, make an implementation where you replace improved Euler by RK4. Compare the results.

Task 3

Kutta's method from 1901 is the most famous of all explicit Runge-Kutta pairs, given by the following Butcher tableau:

0				
$\frac{1}{2}$	$\frac{1}{2}$			
$\frac{1}{2}$	0	$\frac{1}{2}$		
1	0	0	1	
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

a) Verify that the method has order 4 by checking all 8 order conditions.
b) An alluring thought is to now find a new set of weights, say \hat{b}_{s} such that the accompanying method is of order 3, for error estimates and step length control. Try to find such a set of \hat{b}_{s}.

Task 4

a) Show that an explicit Runge-Kutta method with s stages maximally can be of order s. (Hint: Use $y^{\prime}=y, y(0)=y_{0}$ as test equation.)
b) Show that an explicit 3rd order Runge-Kutta method with 3 stages must satisfy

$$
3 a_{32} c_{2}^{2}-2 a_{32} c_{2}-c_{2} c_{3}+c_{3}^{2}=0
$$

c) Characterise all 3rd order explicit Runge-Kutta methods with 3 stages that satisfy $a_{31}=0$, i.e. $a_{32}=c_{3}$. How many free parameters are there?
d) Find all explicit methods of order 2 that have the same coefficients $a_{i j}$ as the method above, and weights that simultaneously satisfy $\hat{b}_{3}=0$.

Task 5

a) Find the eigenvalues of the matrix

$$
M=\left(\begin{array}{cc}
-10 & -10 \\
40 & -10
\end{array}\right) .
$$

b) Assume that you are to solve the differential equation

$$
y^{\prime}=M y, \quad y(0)=y_{0}
$$

using the improved Euler method. What is the largest step size $h_{\max }$ you can use?
c) Solve the equation

$$
y^{\prime}=M y+g(t), \quad 0 \leq t \leq 10
$$

with

$$
g(t)=(\sin (t), \cos (t))^{\mathrm{T}}, \quad y(0)=\left(\frac{5210}{249401}, \frac{20259}{249401}\right)^{\mathrm{T}}
$$

by using impEuler.m. Choose step sizes a little smaller than and a little larger than $h_{\text {max }}$. What do you observe?

Task 6

The linear test equation

$$
y^{\prime}=\lambda y, \quad y(0)=y_{0}
$$

has solution $y(h)=\mathrm{e}^{z} y_{0}$ where $z=\lambda h$. One step with a Runge-Kutta method gives $y_{1}=R(z) y_{0}$. Thus, we can consider the stability function $R(z)$ as an approximation of e^{z}. Will $R(z)$ grow (absolutely) faster than e^{z} ? We can find this out by studying when $\left|R(z) / \mathrm{e}^{z}\right|>1$.

Rewrite the script stab.m so that it plots the region

$$
\mathcal{A}=\left\{z \in \mathbb{C}| | R(z) / \mathrm{e}^{z} \mid>1\right\} .
$$

Calculate the stability function for some of the Runge-Kutta methods you know and find \mathcal{A} for them. You may also draw the stability functions for the Gauss-Legendre methods (collocation methods of order $2 s$). These are given by:

$$
\begin{array}{ll}
s=1, & R(z)=\frac{1+z / 2}{1-z / 2} \\
s=2, & R(z)=\frac{1+z / 2+z^{2} / 12}{1-z / 2+z^{2} / 12} \\
s=3, & R(z)=\frac{1+z / 2+z^{2} / 10+z^{3} / 120}{1-z / 2+z^{2} / 10-z^{3} / 120 .}
\end{array}
$$

The region \mathcal{A} is called an order star.

