TMA4215 Numerical Mathematics
Autumn 2012

Exercise 7

Task 1

Given an ordinary differential equation
v =fty), ylt) =y,  to<t=tea (1)
You can assume that f satisfies the Lipschitz condition
1f (&, y) = f(& DIl < Lily — gll.

A one-step method for solving this differential equation can be described by

tond — &
Yn+1 = Yn + AP (tn, yn; h), n=0,1,...,N —1, hz% (2)

Assume the following:

e The local truncation error given by

dnt1 = Y(tnt1) — y(tn) — hq)(tm y(tn); h)

satisfies
[ dns1 < DRPH

where D is a positive constant.
e The function @ is Lipschitz continuous, with Lipschitz constant M, i.e.
1@ (tn, y; h) — (tn, G h)|| < Mly —gll. (3)
a) Show that in this case, the global error in te,q satisfies
len|l = lly(tena) — ynll < CRP,
where C' is a positive constant depending on M, D and the interval tonq — £g.
b) Assume that a two-stage explicit Runge—Kutta method given by the Butcher tableau

0
Co | C2
b1 by

is used to solve . Show that the method can be written on the form . Now assume
that A < hpax and show that ® satisfies the Lipschitz condition in y, with Lipschitz
constant M that depends on the method coefficients co, b1 and by, as well as L and Apay.



Task 2

The Duffing oscillator is a much studied
mathematical model. This can be de-
scribed by the initial value problem

u” + kv’ —u(l —u?) = Acos(wt). (4)

In 1918, G. Duffing used this equation to
describe a thin, flexible metal bar oscil-
lating near an electromagnet. The con-
stant k is the damping, while w and A are
the frequency and the amplitude of the
driving force from the electromagnet re-
spectively. See http://www.mcasco.com/

Flexing Strip

Total Foree=15 0*cos(] 0%t+H0.0) - x°3 - 1.0%¢ IC=(0.0,0.0)

pattrl.html for more details.

a)
b)

f)

Start by transforming (E[) to a system of two first-order differential equations.

Calculate by hand (you are allowed to use a calculator) a single step with the improved
Euler method (also known as Heun’s method), setting & = 0.25, A = 0.4, w = 1.0,
u(0) = 0, «/(0) = 0, and using step length h = 0.1.

Implement the improved Euler method in MATLAB and use it to solve .

Create a plot of the first component u along the z-axis and the second component v/’
along the y-axis (this is called a phase plot). Start with the same parameters as in b),
but vary them and see what happens. You may use h = 0.01. Try integrating over quite
long time intervals.

Try several different initial values and plot the resulting integral curves to get a picture
of what the curves look like. You can use the same values as above for kK = 0.25, A = 0.4,
w = 1.0.

Finally, make an implementation where you replace improved Euler by RK4. Compare
the results.


http://www.mcasco.com/pattr1.html
http://www.mcasco.com/pattr1.html

Task 3

Kutta’s method from 1901 is the most famous of all explicit Runge-Kutta pairs, given by the
following Butcher tableau:

0

11

21 2

1 1

210 3

110 0 1
10101 1
6 3 3 6

a) Verify that the method has order 4 by checking all 8 order conditions.

b) An alluring thought is to now find a new set of weights, say b, such that the accompanying
method is of order 3, for error estimates and step length control. Try to find such a set
of bs.

Task 4

a) Show that an explicit Runge-Kutta method with s stages maximally can be of order s.
(Hint: Use ' =y, y(0) = yo as test equation.)

b) Show that an explicit 3rd order Runge-Kutta method with 3 stages must satisfy
3@3263 — 2@3262 — CyC3 + C% =0.

c) Characterise all 3rd order explicit Runge-Kutta methods with 3 stages that satisfy
as1 = 0, i.e. ago = c3. How many free parameters are there?

d) Find all explicit methods of order 2 that have the same coefficients a;; as the method
above, and weights that simultaneously satisfy b3 = 0.



Task 5
a) Find the eigenvalues of the matrix
—-10 -10
M= ( 40 —10> ’
b) Assume that you are to solve the differential equation
y =My,  y(0)=y

using the improved Euler method. What is the largest step size hpax you can use?

c) Solve the equation
y'=My+g(t), 0<t<10

_ T 5210 20259 \
o(0) = (o). cos(0) ", 0) = (it o)

by using impEuler.m. Choose step sizes a little smaller than and a little larger than
hmax. What do you observe?

with

Task 6
The linear test equation
y =Xy, y(0)=uwo

has solution y(h) = e*yp where z = Ah. One step with a Runge-Kutta method gives
y1 = R(2)yo. Thus, we can consider the stability function R(z) as an approximation of e*. Will
R(z) grow (absolutely) faster than e*? We can find this out by studying when |R(z)/e*| > 1.

Rewrite the script stab.m so that it plots the region
A={z€C||R(z)/e*| > 1}.

Calculate the stability function for some of the Runge-Kutta methods you know and find A for
them. You may also draw the stability functions for the Gauss—Legendre methods (collocation
methods of order 2s). These are given by:

14 2/2
:1 =
s=1 RE)=1—_ 5
1+2/2+22/12
:2 =
s=%  Re) =1 i
1 2+ 22/1 3/12
s=3, R(z) = +2/2 4 2%2/10 + 22 /120

11— 2z/2422/10 — 23/120°

The region A is called an order star.



