Welcome to

TMA4215 Numerical Mathematics

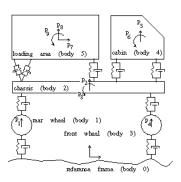
https://wiki.math.ntnu.no/tma4215/2013h/start

Lecturer: Anne Kværnø
Course assistants: Eirik Hoel Høiseth

Asif Mushtaq (projects).

Case: A Truck Model

Mathematical model:



Mathematical Model of the Truck.

Physics:

Newton's second law F = ma.

Rear wheel:

$$m_1p_1''=f_{10}+f_{12}-m_1g$$

where e.g.:

$$f_{10} = k_{10}(p_1 - u(t)) + d_{01}(p'_1 - u'(t)) + f_{10}^0$$

p₁ Vertical position

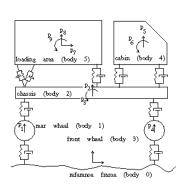
 m_1 Mass of the

g Gravitational constant

 k_{01} , d_{01} Stiffness and damping constants.

u(t) From the road

Similar for p_2, p_3, \ldots, p_9 .



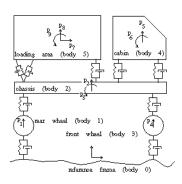
Mathematical Model of the Truck.

Putting everything together:

 We get a system of 9 second order differential equations

$$Mp'' = f(t, p, p'),$$

- which you will hardly solve by hand.
- In December, you will not only be able to solve this problem numerically
- but you have learned how to construct your own algorithms for doing so.



Objective of the course

Given a class of problems (linear or nonlinear equations, integrals, differential equations), you will learn how to

- develop a numerical algorithm
- implement it (computer program)
- do convergence/stability analysis
- do verification (testing, testing, testing)

The focus is on ideas and principles.

Your background

- Mathematics 1-4
- Some programming experience (MATLAB or Python)
- TMA4145 Linear methods this fall is not required, but will be an advantage.

Taylor's theorem

Theorem (A.4 and A.5)

If f is a n + 1 times continuous function, then

$$f(x) = f(a) + (x - a)f'(a) + \cdots + \frac{(x - a)^n}{n!}f^{(n)}(a) + R_{n+1}(x)$$

where

$$R_{n+1}(x) = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(\xi(x)) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

and $\xi(x)$ is somewhere between a and x.

Big O - notation (Ordo)

Definition

$$f(x) = \mathcal{O}(g(x))$$
 as $x \to a$

if and only there exist positive numbers δ and ${\it C}$ such that

$$|f(x)| \le C|g(x)|$$
 for $|x - a| < \delta$

Common use:

$$f(x) = \mathcal{O}((x-a)^p)$$

for some fixed point a and some integer p.

Floating point model

Computers have finite memory, hence not every number can represented exactly on a computer.

Examples: $\sqrt{2}$, π have a infinite number of digits.

To fit in a computer real numbers are approximated by the *floating point model*:

• Binary system is used: If $r \in \mathbb{R}$ then

$$r = \pm (\alpha_k 2^k + \alpha_{k-1} 2^{k-1} + \alpha_1 2 + \alpha_0 + \alpha_{-1} 2^{-1} + \cdots)$$

= \pm (0. \alpha_k \alpha_{k-1} \ldots \alpha_1 \alpha_0 \alpha_{-1} \ldots) \cdot 2^k

where $\alpha_i \in \{0,1\}$, $\alpha_k \neq 0$.

 in a computer, a fixed amount of memory is allocated to represent a number:

$$fl(r) = \pm (0.\alpha_k \, \alpha_{k-1} \, \dots \, \alpha_{k-m-1} \, \tilde{\alpha}_{k-m}) \cdot 2^e$$

significant digits exponent

Floating point numbers

Double precision IEEE 745 (Matlab)

1 bit	52 bits	11 bits
	significant digits	exponent

- Rounding: $r \to fl(r)$.
- Machine accuracy: The smallest number ϵ such that

$$fl(1+\epsilon)
eq 1$$

• Relative rounding error δ_r :

$$fl(r) = r(1 + \delta_r), \qquad |\delta_r| \leq \varepsilon.$$

 Loss of significant digits: loss of precision due subtraction of two almost equal numbers.