
TMA4215 Numerical Mathematics:

Collection of lecture notes.

November 15, 2013

Contents

1 Solution of systems of nonlinear equations 3

2 Linear algebra 5

2.1 Introduction . 5

2.2 Stability of linear systems . 7

2.3 Gaussian elimination . 9

2.4 Other matrix factorizations . 17

2.5 Symmetric matrices . 18

2.6 Gershgorin’s theorem . 19

2.7 Solution of linear systems by iteration . 20

3 Adaptive Simpson 23

4 Gauss quadrature and orthogonal polynomials. 26

5 Note on Splines. 31

5.1 Introduction . 31

5.2 Cubic splines . 32

6 Numerical solution of ordinary differential equations 35

6.1 Eulers method. 35

6.2 Some background on ODEs. 38

6.3 Numerical solution of ODEs. 40

6.3.1 Some examples of one-step methods. 40

6.4 Runge-Kutta methods . 41

6.5 Order conditions for Runge-Kutta methods. 43

6.5.1 Error control and stepsize selection. 46

6.6 Stiff equations and linear stability . 49

1

6.7 Linear multistep methods . 54

6.7.1 Consistency and order. 55

6.7.2 Linear difference equations . 56

6.7.3 Zero-stability and convergence . 57

6.8 Adams-Bashforth-Moulton methods . 59

6.9 Predictor-corrector methods . 60

2

1 Solution of systems of nonlinear equations

Given a system of nonlinear equations

f(x) = 0, f : Rm → R
m (1)

for which we assume that there is (at least) one solution xi. The idea is to rewrite this system
into the form

x = g(x), g : Rm → R
m. (2)

The solution ξ of (1) should satisfy ξ = g(ξ), and is thus called a fixed point of g. The
iteration schemes becomes: given an initial guess x(0), the fixed point iterations becomes

x(k+1) = g(x(k)), k = 1, 2, (3)

The following questions arise:

(i) How to find a suitable function g?
(ii) Under what conditions will the sequence x(k) converge to the fixed point ξ?
(iii) How quickly will the sequence x(k) converge?

Point (ii) can be answered by Banach fixed point theorem:

Theorem 1.1. Let D ⊆ R
m be a convex1 and closed set. If

g(D) ⊆ D (4a)

and

‖g(y) − g(v)‖ ≤ L‖y − v‖, with L < 1 for all y,v ∈ D, (4b)

then G has a unique fixed point in D and the fixed point iterations (3) converges for all
x(0) ∈ D. Further,

‖x(k) − ξ‖ ≤ Lk

1− L‖x
(1) − x(0)‖. (4c)

Proof. The proof is based on the Cauchy Convergence theorem, saying that a sequence {x(k)}∞k=0

converges to some ξ if and only if for every ε > 0 there is an N such that

‖x(l) − x(k)‖ < ε for all l, k > N. (5)

Assumption (4a) ensures x(k) ∈ D as long as x(0) ∈ D. From (3) and (4b) we get:

‖x(k+1) − x(k)‖ = ‖g(x(k))− g(x(k−1))‖ ≤ L‖x(k) − x(k−1)‖ ≤ Lk‖x(1) − x(0)‖.

We can write x(k+p) − x(k) =
∑p

i=1(x
(k+i) − x(k+i−1)), thus

‖x(k+p) − x(k)‖ ≤
p

∑

i=1

‖x(k+i) − x(k+i−1)‖

= (Lp−1 + Lp−2 + · · ·+ 1)‖x(k+1) − x(k)‖ ≤ Lk

1− L‖x
(1) − x(0)‖,

1D is convex if θy + (1− θ)v ∈ D for all y, v ∈ D and θ ∈ [0, 1].

3

since L < 1. For the same reason, the sequence satisfy (5), so the sequence converges to some
ξ ∈ D. Since the inequality is true for all p > 0 it is also true for ξ, proving (4c).

To prove that the fixed point is unique, let ξ and η be two different fixed points in D. Then

‖ξ − η‖ = ‖g(ξ) − g(η)‖ < ‖ξ − η‖

which is impossible.

For a given problem, it is not necessarily straightforward to justify the two assumptions of the
theorem. But it is sufficient to find some L satisfying the condition L < 1 in some norm to
prove convergence.

Let x = [x1, . . . , xm]T and g(x) = [g1(x), . . . , gm(x)]T . Let y,v ∈ D, and let x(θ) = θy+(1−
θ)v be the straight line between y and v. According to the mean value theorem for functions,
for each gi there exist at θ̃i such that

gi(y) − gi(v) = gi(x(1)) − gi(x(0)) =
dgi
dθ

(θ̃i)(1 − 0), θ̃i ∈ (0, 1)

=

m∑

j=1

∂gi
∂xj

(x̃i)(yj − vj), x̃i = θ̃iy + (1− θ̃i)v

since dxj(θ)/dθ = yj − vj. Then

|gi(y)− gi(v)| ≤
m∑

j=1

| ∂gi
∂xj

(x̃i)| · |yj − vj | ≤





m∑

j=1

| ∂gi
∂xj

(x̃i)|



max
l
|yl − vl|.

If we let ḡij be some upper bound for each of the partial derivatives, that is

| ∂gi
∂xj

(x)| ≤ ḡij , for all x ∈ D.

then

‖g(y) − g(v)‖∞ =



max
i

m∑

j=1

ḡij



 ‖y − v‖∞.

We can then conclude that (4b) is satisfied if

max
i

m∑

j=1

ḡij < 1.

Newton’s method

Newton’s method is a fixed point iterations for which

g(x(k)) = x(k) − Jf (x(k))−1f(x(k)), (6)

where the Jacobian is the matrix function

Jf (x) =






∂f1
∂x1

(x) · · · ∂f1
∂xm

(x)
...

...
∂fm
∂x1

(x) · · · ∂fm
∂xm

(x)




 .

4

The Newton method can be derived as follow: Consider element i in f , that is fi(x). Do a
multidimensional Taylor expansion of fi(ξ) around the vector x(k), using e(k) = ξ − x(k) This
gives

0 = fi(x
(k)
1 + e

(k)
1 , . . . , x(k)m + e(k)m) = fi +

∂fi
∂x1

e
(k)
1 + · · ·+ ∂fi

∂xm
e(k)m +Ri

The function and all the derivatives are evaluated in x(k). The remainder term Ri consists of
quadratic terms like O(e(k)i e

(k)
j). If the error is small, this term is even smaller, so let us now

ignore it and replace the errors e
(k)
i with an approximation to the error ∆x

(k)
i to compensate.

Doing so for each i = 1, 2, . . . ,m gives us the following system of linear equations,

fi +
∂fi
∂x1

∆x
(k)
1 + · · · + ∂fi

∂xm
∆x(k)m = 0, i = 1, 2, . . . ,m.

which is
f(x(k)) + Jf (x

(k)) ·∆x(k) = 0.

Solve this with repect to ∆x(k). Remember that ∆x(k) ≈ ξ − x
(k)
k it seems reasonable to

update our iterate with this amount, thus

x(k+1) = x(k) +∆x
(k)
k

which finally results in (6).

It is possible to prove that if i) (1) has a solution ξ, ii) Jf (x) is nonsingular in some open
neighbourhood around ξ and iii) the initial guess x(0) is sufficiently close to ξ, the Newton
iterations will converge to ξ and

‖ξ − x(k+1)‖ ≤ K‖ξ − x(k)‖2

for some positive constant K. We say that the convergence is quadratic.

2 Linear algebra

Author: Elena Celledoni.

2.1 Introduction

We consider the approximation of the solution of linear systems of algebraic equations with n
equations and n unknowns:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1
a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

...
...

...
an,1x1 + an,2x2 + · · ·+ an,nxn = bn

(7)

where (x1, · · · , xn) are the unknowns. Given (ai,j)1≤i,j≤n, and bi, i = 1, · · · , n.

5

We can rewrite (7) in a matrix form by defining:

A :=








a1,1 a1,2 · · · · · · a1,n
a2,1 a2,2 · · · · · · a2,n
...

... · · · · · · ...
an,1 an,2 · · · · · · an,n







, x :=








x1
x2
...
xn







, b :=








b1
b2
...
bn








so we have that (7) becomes
A · x = b. (8)

Linear systems can be easily solved when A has a special structure, for example when A is a
diagonal matrix or triangular matrix and ai,i 6= 0 for i = 1, . . . , n:

• A diagonal matrix

A =











a1,1 0 · · · · · · 0
0 a2,2 0 · · · 0
...

...
. . . · · · ...

...
...

. . .
. . .

...
0 0 · · · · · · an,n











⇒

a1,1x1 = b1

a2,2x2 = b2

...
...

...

an,nxn = bn

x1 = b1
a1,1

x2 = b2
a2,2

...
...

...

xn = bn
an,n

• A triangular matrix

A =











a1,1 a1,2 · · · · · · a1,n
0 a2,2 a2,3 · · · a2,n
...

. . .
. . .

. . .
...

0
. . . 0 an−1,n−1 an−1,n

0 0 · · · 0 an,n











⇒

a1,1x1 + a1,2x2 + · · ·+ · · ·+ a1,nxn = b1

a2,2x2 + · · ·+ · · ·+ a2,nxn = b2

· · · ...
...

an−1,n−1xn−1 + subsubsection ∗ ∗an−1,nxn = bn−1

an,nxn = bn

⇒

x1 =
b1−

∑n
j=2 a1,jxj

a1,1

x2 =
b2−

∑n
j=3 a2,jxj

a2,2

...
...

...

xn−1 =
bn−1−an−1,nxn

an−1,n−1

xn = bn
an,n

(9)

6

The formula (9) is called back substitution algorithm. For general maurices other techniques
based on matrix factorizations are in general used. If the matrix is of large size and sparse (i.e.
it has a relatively small number of elements different from zero), then it is more convenient
to use iterative techniques. We will describe here briefly both approaches. In the next section
we consider the stability of linear systems, that is the sensitivity of the output with respect
to perturbations in the input data.

2.2 Stability of linear systems

Preliminaries

A vector norm is a function ‖ · ‖ : Rn → R satisfying three axioms:

1. ‖u‖ ≥ 0 for all u ∈ Rn and ‖u‖ = 0 if and only if u = 0.

2. ‖λu‖ = |λ|‖u‖for all vectors u ∈ Rn and scalars λ ∈ R.

3. ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u ∈ Rn and v ∈ Rn.

If u is a vector with n components, examples of norms are:

• ‖u‖1 := |u1|+ · · ·+ |un|, norm-1;

• ‖u‖∞ := max1≤i≤n |ui|, max-norm;

• ‖u‖2 :=
(
|u1|2 + · · · + |un|2

) 1
2 =

(
uTu

) 1
2 , norm-2.

We will also make use of matrix-norms. Matrix-norms satisfy an extra axiom compared to
vector norms; this axiom has to do with the product of matrices, so if A and B are n × n
matrices, for a vector-norm according to this axiom we have that

‖AB‖ ≤ ‖A‖‖B‖.

Assume U is a matrix with elements ui,j, examples of matrix-norms are:

• ‖U‖F =
√

∑n
i=1

∑n
j=1 u

2
i,j, Frobenius norm;

• ‖U‖∞ := maxi
∑n

j=1 |ui,j| max-norm;

• ‖U‖1 := maxj
∑n

i=1 |ui,j | norm-1.

For example for

U :=

[
3 2
−1 0

]

,

we get

‖U‖F =
√

32 + 22 + (−1)2 =
√
14 = 3.74165738677394,

‖U‖∞ = max{|3| + |2|, | − 1|+ |0|} = 5,

‖U‖1 = max{|3| + | − 1|, |2| + |0|} = 4.

7

Stability analysis

Consider Ax = b, A invertible. Let x(ε) be the solution of the linear system

(A+ εF)x(ε) = (b+ εf).

We are intersted in the case when ε tends to zero. Here f ∈ Rn and F is n× n matrix.

We seek for bounds for the relative error

‖x− x(ε)‖
‖x‖ ,

for a chosen vector-norm ‖ ·‖. We will also make use of the so called subordinate matrix-norm
deduced from ‖ · ‖, that is for a given n× n matrix B:

‖B‖ := max
x 6=0, x∈Rn

‖Bx‖
‖x‖ .

Proposition 2.1. Assume A is invertible. For all ε such that ε ≤ Cε, A+εF is also invertible.

Proposition 2.2. For all ε such that ε ≤ C̃ε, here exists a unique x(ε) and its components,
xi(ε) are continuous functions of ε.

Lemma 2.3.
d

dε
x(ε)

∣
∣
∣
∣
ε=0

= A−1(f − Fx).

Proof. By differentiation.

We now use Taylor theorem and obtain

x(ε) = x(0) + εx′(0) +O(ε2),

where x(0) = x. So
‖x(ε) − x‖ ≤ ε‖x′(0)‖ +O(ε2),

and using the lemma, we obtain

‖x(ε) − x‖ ≤ ε‖A−1(f − Fx)‖+O(ε2).

This leads to

‖x(ε)− x‖
‖x‖ ≤ ε‖A

−1(f − Fx)‖
‖x‖ +O(ε2) ≤ ε‖A−1‖

(‖f‖
‖x‖ +

‖Fx‖
‖x‖

)

+O(ε2).

Now Ax = b implies ‖b‖ ≤ ‖A‖‖x‖, and this is equivalent to

1

‖x‖ ≤
‖A‖
‖b‖ .

We also have
‖Fx‖
‖x‖ ≤ ‖F‖ =

‖F‖‖A‖
‖A‖ .

8

So proceeding in the estimation of the relative error we get

‖x(ε) − x‖
‖x‖ ≤ ε‖A−1‖

(‖f‖‖A‖
‖b‖ +

‖F‖‖A‖
‖A‖

)

+O(ε2),

and we obtain
‖x(ε) − x‖
‖x‖ ≤ ε‖A−1‖‖A‖

(‖f‖
‖b‖ +

‖F‖
‖b‖

)

+O(ε2).

The real number
K(A) := ‖A−1‖ ‖A‖

is called condition number of A. The condition number depends on A and on the matrix-
norm used to measure the relative error. The final bound of the relative error is then

‖x(ε) − x‖
‖x‖ ≤ εK(A)

(‖f‖
‖b‖ +

‖F‖
‖b‖

)

+O(ε2),

and we clearly see that the condition number gives a bound of the leading error term (in ε)
of the relative error in the output data by means of the relative error in the input data.

We observe that since I = A−1A, then

‖I‖ ≤ ‖A−1‖ ‖A‖ = K(A),

and for all subordinate matrix-norms

‖I‖ = max
x 6=0, x∈Rn

‖I x‖
‖x‖ = 1,

so
1 ≤ K(A).

2.3 Gaussian elimination

Definition. Two linear systems of equations are said to be equivalent if they have the same
solution.

Gaussian elimination is an algorithm where in n − 1 steps, Ax = b is transformed in an
equivalent system Ux = f and U is an upper triangular matrix. The advantage is that
triangular systems can be easily solved using the formula (9).

In particular we have

Ax = b→ A(1)x = b(1) → · · · → A(k)x = b(k) → · · · → A(n−1)x = b(n−1)

all intermediate linear systems A(k)x = b(k) k = 1, . . . , n − 1 are equivalent to Ax = b. The
last system A(n−1)x = b(n−1), is in upper triangular form, and system number k is

A(k) =















ã1,1 · · · ã1,k ã1,k+1 · · · ã1,n

0
. . .

...
... · · · ...

...
. . . ãk,k ãk,k+1 · · · ãk,n

...
... 0 ãk+1,k+1 · · · ãk+1,n

...
...

...
...

...
...

0 · · · 0 ãn,k+1 · · · ãn,n















.

9

We obtain A(1)x = b(1) from Ax = b by replacing the den 2nd, 3rd, .., nth equation in
Ax = b with corresponding linear combinations of the first equation with the 2nd, 3rd, ..,
nth equation. To obtain A(2)x = b(2) (and the subsequent linear systems) the same process is
repeated considering only prosessen er repetert med å ta hensyn til kolonnene fra the columns
form the 2nd to the nth and the rows from the 2nd to the nth.

Example

Given:
x1 + 4x2 + x3 = 6
2x1 − x2 − 2x3 = 3
x1 + 3x2 + 2x3 = 5

A =





1 4 1
2 −1 −2
1 3 2









x1
x2
x3



 =





6
3
5



 (10)

we want to reduce it t a triangular form.

We start with replacing the second equation with a linear combination of the first two equa-
tions, that is we replace
2x1 − x2 − 2x3 = 3 with

(2x1 − x2 − 2x3) + (−2) · (x1 + 4x2 + x3) = 3 + (−2) · 6,⇒ −9x2 − 4x3 = −9.

We then replace the 3rd equation with a linear combination of the 3rd and 1st equation:

(x1 + 3x2 + 2x3) + (−1) · (x1 + 4x2 − x3) = 5 + (−1) · 6,⇒ −x2 + x3 = −1.

This way we get the following new system

x1 + 4x2 + x3 = 6
−9x2 − 4x3 = −9
−x2 + x3 = −1

A(1) =





1 4 1
0 −9 −4
0 −1 1









x1
x2
x3



 =





6
−9
−1



 (11)

The coefficients used in the linear combination of the equations are

[
2
1

]

, and they are chosen

so that in the new system we get that the second and third element of the first column vanish,
this way we eliminate to coefficients in the linear system.

Now we work only with the two last equations:

−9x2 − 4x3 = −9
−x2 + x3 = −1 (12)

We replace the last equaltion with

(−x2 + x3) + (−1

9
) · (−9x2 − 4x3) = −1 +

(

−1

9

)

· (−9)⇒ 13

9
x3 = 0.

The coefficient used for the linear combination is 1
9 .

In the end we get the linear system

x1 + 4x2 + x3 = 6
−9x2 − 4x3 = −9

13
9 x3 = 0

A(2) =





1 4 1
0 −9 −4
0 0 13

9









x1
x2
x3



 =





6
−9
0



 (13)

10

and the solution can be computed by the backward substitution algorithm. Starting form the
last equation x3 = 0, and proceeding upwards to solve −9x2 = −9⇒ x2 = 1 og x1 +4 = 6⇒
x1 = 2, we get

x =





2
1
0



 .

Note now that when we eliminated the first column we used the two coefficients:
[
2
1

]

,

and for the second we used
1

9
.

By using these coefficients we construct a triangular matrix L:

L :=





1 0 0
2 1 0
1 1

9 1



 .

Note also that if from (13) we define now U := A(2) and we compute L · U , we get A back.

In general when we perform the Gaussian elimination, we compute simultaneously a factor-
ization of the matrix A = LU , where L and U are two triangular matrices.

This is very handy if we want to compute solution of two or more systems with the same
coefficient matrix A but different right hand sides, b, b̂ and so on. In this case one can use the
same factorization LU = A two (or more) times ganger and compute to different backward
substitutions, one with b and one with b̂.

Such factorization is also used for computing the determinant of A, because det(A) =
∏n

i=1 ui,i.
Analogously one can use the factorization to find the inverse A−1. In our case we have

det(A) = 1 · (−9) · 13
9

= −13

and

A−1 =





1 4 1
0 −9 −4
0 0 13

9





−1 



1 0 0
2 1 0
1 1

9 1





−1

=





1 4
9

7
13

0 −1
9 − 4

13
0 0 9

13









1 0 0
−2 1 0
−7

9 −1
9 1





Note that it is much easier to compute the inverse of a triangular matrix than the inverse of
a general invertible but unstructured matrix.

Gauss elimination: general algorithm

For the general matrix (7) we have:

Ax = b→ A(1)x = b(1)

11

if a1,1 6= 0

l2,1 :=
a2,1
a1,1

a
(1)
2,p := a2,p − l2,1a1,p b

(1)
2 := b2 − l2,1b1

l3,1 :=
a3,1
a1,1

a
(1)
3,p := a3,p − l3,1a1,p b

(1)
3 := b3 − l3,1b1

...

ln,1 :=
an,1

a1,1
a
(1)
n,p := an,p − ln,1a1,p b

(1)
n := bn − ln,1b1







p = 2, . . . , n.

Now we define
A := A(1), b := b(1)

and continue with
Ax = b→ A(2)x = b(2).

If a2,2 6= 0, we obtain, for j = 3, . . . , n,

lj,2 :=
aj,2
a2,2

a
(2)
j,p := aj,p − lj,2a2,p b

(2)
j := bj − lj,2b2 p = 3, . . . , n,

and then we define
A := A(2), b := b(2).

In general for A(k) we have,
A := A(k−1), b := b(k−1)

and
Ax = b→ A(k)x = b(k)

with

lj,k :=
aj,k
ak,k

a
(k)
j,p := aj,p − lj,kak,p b

(k)
j := bj − lj,kbk p = k + 1, . . . , n.

for j = k + 1, . . . n, and assuming ak,k 6= 0. In the end we obtain the following algorithm:

12

Gaussian elimination

For k = 1, . . . , n − 1

For j = k + 1, . . . , n

lj,k :=
aj,k
ak,k

For p = k + 1, . . . , n+ 1,

aj,p := aj,p − lj,kak,p

End

End

End

And with U := A(n−1) we also obtain the following, so called LU-factorization for A,

A = LU.

Gaussian elimination with partial pivoting

In Gaussisan elimination (G-E), as described on the general algorithm, we divide always by
ak,k (the so called pivot element). Obviously we might get problems when such value is zero
or very small. To avoid such problems we can perform systematic permutationns of the rows
of the linear system. This procedure is called partial pivoting.

Two exmples: Gaussian elimination with partial pivoting

Consider the linear system

x1 + x2 + x3 + x4 = 1
x1 + x2 + 2x3 − x4 = 1
x1 + 2x2 − x3 − x4 = 1
x1 − x2 + x3 − x4 = 1







1 1 1 1
1 1 2 −1
1 2 −1 −1
1 −1 1 −1







(14)

We eliminate the first column by subtracting the first row from the other three. We obtain

x1 + x2 + x3 + x4 = 1
x3 − 2x4 = 0

x2 − 2x3 − 2x4 = 0
−2x2 − 2x4 = 0







1 1 1 1
0 0 1 −2
0 1 −2 −2
0 −2 0 −2







(15)

now we can not proceede, because there is no α which could be used to eliminate x2

(x2 − 2x3 − 2x4)− α · (x3 − 2x4) = 0.

13

The only option is to permute the rows. To minimize roundoff error propagation it pays off
to exchange the second row with the row having the biggest coefficient in absolute value for
x2, that is the third. Then we get

x1 + x2 + x3 + x4 = 1
−2x2 − 2x4 = 0

x2 − 2x3 − 2x4 = 0
x3 − 2x4 = 0







1 1 1 1
0 −2 0 −2
0 1 −2 −2
0 0 1 −2







(16)

and now we continue the Gaussian elimination as usual. We obtain:

x1 + x2 + x3 + x4 = 1
−2x2 − 2x4 = 0
−2x3 − 3x4 = 0
x3 − 2x4 = 0







1 1 1 1
0 −2 0 −2
0 0 −2 −3
0 0 1 −2







(17)

and in the end:
x1 + x2 + x3 + x4 = 1
−2x2 − 2x4 = 0
−2x3 − 3x4 = 0
−7

2x4 = 0







1 1 1 1
0 −2 0 −2
0 0 −2 −3
0 0 0 −7

2







(18)

which, by the backward substitution algorithm, gives the following solution

x =







1
0
0
0






.

In the second example given:

x1 + 3x2 + 2x3 = 5
2x1 − x2 − 2x3 = 3
x1 + 4x2 + x3 = 6

A =





1 3 2
2 −1 −2
1 4 1









x1
x2
x3



 =





5
3
6



 (19)

we want to reduce the system to triangular form using Gaussian elimination with partial
pivoting.

We exchange rows:
2x1 − x2 − 2x3 = 3
x1 + 3x2 + 2x3 = 5
x1 + 4x2 + x3 = 6

(20)

then we eliminate x1,
2x1 − x2 − 2x3 = 3
3.5x2 + 3x3 = 3.5
4.5x2 + 2x3 = 4.5

(21)

we exchange rows once more:

2x1 − x2 − 2x3 = 3
4.5x2 + 2x3 = 4.5
3.5x2 + 3x3 = 3.5

(22)

14

and eliminate x2 from the last equation,

2x1 − x2 − 2x3 = 3
4.5x2 + 2x3 = 4.5
1.4444x3 = 0

(23)

with the backward substitution algorithm we obtain the solution x3 = 0, x2 = 1, x1 = 2.

G-E with partial pivoting: general algorithm

In general we get the following Gaussian elimination algorithm with partial pivoting: first one
initializes the vector π (pivot vektor) so that πi := i for i = 1, . . . n,

15

Gaussian elimination with partial pivoting

For k = 1, . . . , n − 1

a := |ak,k|

For j = k + 1, . . . , n

if (a < |aj,k|)

a := |aj,k|

πk := j

End

End

if (πk 6= k)

s := πk

For p = k, . . . , n

r := ak,p

ak,p := as,p

as,p := r

End

End

For j = k + 1, . . . , n

lj,k :=
aj,k
ak,k

For p = k + 1, . . . , n+ 1,

aj,p := aj,p − lj,kak,p
End

End

End

Complexity of Gaussian elimination

One can prove that for a n× n matrix the complexity of Gaussian elimination is of

1

3
n3 − 1

3
n,

16

operations (additions and multiplications). For big n 1
3n

3 dominates the cost. We say that
Gaussian elimination has complexity O(n3). The backward substitution algorithm, (9)) has
lower cost, that is O(n2).

2.4 Other matrix factorizations

Bisides the LU -factorizations there are many other important matrix factorizations which is
useful to know about.

Recall that an eigenvalue of A is a real or complex value such that, there is u vector such that

Au = λu.

u is called eigenvector of A.

1. QR- factorization: any real matrix A n× p can be factorized in the form

A = QR

where Q is n× n orthogonal (i.e. QTQ = QQT = I where I is the identity matrix) and
R is n× p is upper triangular.

2. Polar decomposition: any matrix A n× n can be factorized in the form

A = QS

where Q is n× n orthogonal and S is n× n is symmetric.

3. Schur canonical form: for any matrix A n × n there exists a matrix P (complex)
unitary (i.e. PHP = PPH = I and PH the transpose-conjugate of P) such that

PHAP = T

where T is upper triangular.

As a consequence, if A is Hermitian (i.e. A = AH) then

PHAP = PHAHP = T

and T is Hermitian and triangular and therefore is diagonal.

4. Singular value decomposition. For all A n× n real matrices, A can be factorized as

A = UΣV T

where Σ is diagonal, U and V are n × n orthogonal matrices. The diagonal elements
of Σ are the singular values of A, i.e. the square roots of the eigenvalues of ATA. This
factorization has analogs for n× p matrices and for matrices with complex entries.

17

5. Jordan canonical form. For any A real n × n (or A ∈ C
n×n) it exists a matrix

M ∈ C
n×n invertible, such that

M−1AM = J =








J1
J2

. . .

Jk







, (block-diagonal). (24)

Here Ji is a mi ×mi-matrix, and
∑k

i=1mi = n. The Jordan-blocks Ji have the form

Ji =









λi 1

λi
. . .
. . . 1

λi









, if mi ≥ 2

and Ji = [λi] if mi = 1. If all mi = 1, then k = n and the matrix is diagonalizable. If
A has n distinct egenvalues, it is always diagonalizable. The converse is not true, that
is a matrix can be diagonalizable even if it has multiple eigenvalues.

2.5 Symmetric matrices

When we talk about symmetric matrices, we mean normally real symmetric matrices. The
transpose AT of a m× n-matrix A, is a n×m-matrix with aji as the (ij)-element (a matrix
whose columns are the rows of A). A n× n matrix is symmetric if AT = A.

A symmetric n × n matrix has real eigenvalues λ1, . . . , λn and a set of real orthonormal
eigenvectors x1, . . . , xn. Let 〈·, ·〉 denote the standard inner-product on C

n, then 〈xi, xj〉 = δij
(Kronecker-delta).

A consequence of this is that the matrix of eigenvectors X = [x1, . . . , xn] is real and orthogonal
and its inverse is therefore the transpose

X−1 = XT .

The diagonalization of A is given by

Λ = diag(λ1, . . . , λn), X = [x1, . . . , xn], XTX = I, XTAX = Λ⇔ A = XΛXT

Positive definite matrices

If A is symmetric and 〈x,Ax〉 = xTAx > 0 for all 0 6= x ∈ R
n A is called positive definite.

Here we denote with 〈·, ·〉 the Euclidean inner product.

A (symmetric) is positive semi-definite if 〈x,Ax〉 ≥ 0 for all x ∈ R
n and 〈x,Ax〉 = 0 for at

least a x 6= 0.

A positive definite ⇔ A has only positive eigenvalues.

A positive semi-definite ⇔ A has only non-negative eigenvalues, and at least a 0-eigenvalue.

18

2.6 Gershgorin’s theorem

Gershgorin’s theorem. Is given A = (aik) ∈ C
n×n. Define n disks Sj in the complex plane

by

Sj =






z ∈ C : |z − ajj| ≤

∑

k 6=j

|ajk|






.

The union S =

n⋃

j=1

Sj contains all the eigenvalues of A. For every eigenvalue λ of A there is a

j such that λ ∈ Sj.
Example.

A =





1 + i 1 0
0.5 3 1
1 1 5



 .

0 1 2 3 4 5 6 7

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Re

Im

�

Proof of Gershgorin’s theorem: Let λ be a eigenvalue with associate eigenvector x = [ξ1, . . . , ξn]
T 6=

0. Choose ℓ among the indexes 1, . . . , n such that |ξℓ| ≥ |ξk|, k = 1, . . . , n, and so |ξℓ| > 0.
The equation Ax = λx has component ℓ:

n∑

k=1

aℓkξk = λ ξℓ ⇒ (λ− aℓℓ)ξℓ =
∑

k 6=ℓ

aℓkξk

19

Divide by |ξℓ| on each side and take the absolute value

|λ− aℓℓ| =

∣
∣
∣
∣
∣
∣

∑

k 6=ℓ

aℓk
ξk
ξℓ

∣
∣
∣
∣
∣
∣

≤
∑

k 6=ℓ

|aℓk|
|ξk|
|ξℓ|

≤
∑

k 6=ℓ

|aℓk|

Then we get λ ∈ Sℓ.

Example. Diagonally dominant matrices with positive diagonal elements are positive definite.
Why?

thm

2.7 Solution of linear systems by iteration

To approximate x in the numerical solution of Ax = b, given x(0), we construct a sequence of
vectors x(1), . . . , x(n), A way to do this is by fixed-point iteration.

We consider an equivalent formulation of Ax = b as fix-point equaltion. For example:

Ax = b⇔ x = (I −A)x+ b

where I is the n× n identity matrix. Given x0, we then obtain the iteration:

x(n+1) = (I −A)x(n) + b.

In general one can obtain an iteration as follows:

• write A as a sum of two terms: A =M −N , choose M invertible;

• from (M −N)x = b one gets Mx = Nx+ b and

x =M−1Nx+M−1b;

• so given x0 one builds the iteration:

x(n+1) =M−1Nx(n) +M−1b.

Typically M is chosen such that M−1 is easy to compute, for example M can be diagonal or
triangular.

Example

We want to solve with fix-point-iteration the system

x1 − x2 = 1
−x1 + 2x2 = −1 A :=

[
1 −1
−1 2

]

,

[
1
−1

]

, (25)

and start with

x(0) =

[
0
0

]

.

20

The solution is

x =

[
1
0

]

.

We take

M :=

[
1 0
0 2

]

N =M −A =

[
0 1
1 0

]

.

We have Mx = Nx+ b, and x =M−1Nx+M−1b, i.e.
[
x1
x2

]

=

[
1 0
0 2

]−1 [
0 1
1 0

] [
x1
x2

]

+

[
1 0
0 2

]−1 [
1
−1

]

.

By using x(0) we compute
x(1) =M−1Nx(0) +M−1b,

[

x
(1)
1

x
(1)
2

]

=

[
1 0
0 2

]−1 [
1
−1

]

=

[
1
−1

2

]

.

We continue x(2) =M−1Nx(1) +M−1b:
[

x
(2)
1

x
(2)
2

]

=

[
1 0
0 2

]−1 [
0 1
1 0

] [

x
(1)
1

x
(1)
2

]

+

[
1
−1

2

]

=

[
1
2
0

]

and more
[

x
(3)
1

x
(3)
2

]

=

[
1

−0.2500

]

,

[

x
(4)
1

x
(4)
2

]

=

[
0.7500

0

]

,

[

x
(5)
1

x
(5)
2

]

=

[
1

−0.1250

]

,

[

x
(6)
1

x
(6)
2

]

=

[
0.8750

0

]

,

[

x
(28)
1

x
(28)
2

]

=

[
1.0000
−0.0000

]

.

Example

In the system (25) we take

M :=

[
1 0
−1 2

]

N =M −A =

[
0 1
0 0

]

,

and with the same x(0) we compute x(1) =M−1Nx(0) +M−1b:
[

x
(1)
1

x
(1)
2

]

=

[
1 0
−1 2

]−1 [
1
−1

]

=

[
1
0

]

,

and we get the true solution of the system already at the first iteration.

In general if M is the diagonal part of A, i.e.

mi,i = ai,i, i = 1, . . . , n, mi,j = 0, i 6= j,

(where mi,j are the elements of M , and ai,j are the elements of A), then we obtain the so
called Jacobi method.

If M is the lower triangular part of A, i.e.

mi,j = ai,j, i = 1, . . . , n, j = 1, . . . , i, mi,j = 0, i = 1, . . . , n, j = i+ 1, . . . , n,

then the method is called Gauss-Seidel method.

21

Convergence

To measure the extent to which xn has converged to x we use vector norms: ‖x− x(n)‖.

We write the iteration in the following general way

x(n+1) =M−1Nx(n) +M−1b,

by defining C :=M−1N and g :=M−1b we can write:

x(n+1) = Cx(n) + g. (26)

Theorem 2.4. If there is a matrix-norm ‖ · ‖ such that ‖C‖ < 1 the iteration (26) converges
for all x(0).

Example

Consider

B =

[
3 1
−1 2.5

]

,M =

[
3 0
0 2.5

]

, N =

[
0 −1
1 0

]

then

CJ =M−1N =

[
0 −0.3333

0.4000 0

]

and ‖CJ‖F = 0.5207, ‖CJ‖1 = ‖CJ‖max = 0.4000, so given f , the Jacobi method converges
for Bx = f for any x(0).

For the Gauss-Seidel method we have

CGS =

[
3 0
−1 2.5

]−1 [
0 −1
0 0

]

=

[
0 −0.3333
0 −0.1333

]

and ‖CGS‖F = 0.3590, ‖CGS‖1 = 0.4667 and ‖CGS‖max = 0.3333, so Gauss-Seidel method
converges for Bx = f and for any x(0).

Example

Consider the matrix from the example (25):

A :=

[
1 −1
−1 2

]

,

Both Jacobi and Gauss-Seidel converge. For the Jacobi method we have:

CJ =

[
1 0
0 2

]−1 [
0 1
1 0

]

=

[
0 1
1
2 0

]

with norms ‖CJ‖F ≥ 1 ‖CJ‖max ≥ 1 ‖CJ‖1 ≥ 1. For Gauss-Seidel

CGS =

[
1 0
−1 2

]−1 [
0 1
0 0

]

=

[
0 1
0 1

2

]

22

and ‖CGS‖F ≥ 1 ‖CGS‖max ≥ 1 ‖CGS‖1 ≥ 1.

Here the hypothesis of the previous theorem are not satisfied, even if in our numerical exper-
iments the iteration converges. We should use another technique to prove convergence. Let
σ(C) be the set of eigenvalues of C, then we can define

ρ(C) := max
λ∈σ(C)

|λ|

ρ(C) is named spectral radius of C, and it is a positive number.

One can show that

Theorem 2.5. ρ(C) < 1 if and only if the iterative method (26) converges for all x(0).

In our example we must look at the eigenvalues of CJ and CGS . Note that

Cu = λu⇔ (C − λI)u = 0⇔ det(C − λI) = 0,

where I is the identity matrix and

det(U) = det

([
u1,1 u1,2
u2,1 u2,2

])

= u1,1 · u2,2 − u1,2 · u2,1.

So

det(CJ − λI) = det

([
0 1
1
2 0

]

−
[
λ 0
0 λ

])

= det

([
−λ 1
1
2 −λ

])

= λ2 − 1

2
,

and λJ1,2 = ±
√

1
2 ≈ ±0.7071. So ρ(C) = 0.7071 and ρ(C) < 1.

For CGS we have

det(CJ − λI) = det

([
−λ 1
0 1

2 − λ

])

= λ

(
1

2
− λ

)

,

and λGS
1 = 0 and λGS

2 = 1
2 and ρ(CGS) =

1
2 .

The reason why Gauss-Seidel converges faster than Jacobi is that ρ(CGS) ≤ ρ(CJ).

3 Adaptive Simpson

We now want to find an approximation Q(a, b) to the integral I(a, b) =
∫ b
a f(x)dx so that the

error is below a given tolerance ǫ, thus

|I(a, b) −Q(a, b)| . ǫ,

To do this, we will need a strategy for

• estimating the error I(a, b) −Q(a, b).

• Divivde the interval [a, b] interval into subintervals a = X0 < X1 < · · · < XM = b so
that

|I(Xk,Xk+1)−Q(Xk,Xk+1)| .
Xk+1 −Xk

b− a ǫ.

And we will use Simpsons method as an example here, but the strategy is applicable for other
methods as well.

23

Error estimate

Simpsons formula is given by

S(a, b) =
b− a
6

(

f(a) + 4f(c) + f(b)

)

, c =
a+ b

2
.

and the error is given by

I(a, b) − S(a, b) = −(b− a)5
2880

f (4)(ξ), ξ ∈ (a, b).

Assume now that the interval [a, b] is small, so that f (4) is almost constant over this interval.
In that case, the formula above becomes

I(a, b) − S(a, b) ≈ C(b− a)5, C ≈ − f (4)

2880
(27)

Next, let us split the interval in two equal parts: [a, c] and [c, b] and integrate each subinterval
by Simpsons method:

S2 = S(a, c)+S(c, b) =
(b− a)
2 · 6

(

f(a)+4f(d)+2f(c)+4f(e)+f(b)

)

, d =
a+ c

2
, e =

c+ b

2

and the error is

I(a, b)− S2 = −
(b− a)5
25 · 2880f

(4)(ξ1)−
(b− a)5
25 · 2880f

(4)(ξ2) ≈ C ·
1

24
(b− a)5 (28)

For notational convenience, use S1 = S(a, b). Multiplying (28) by 16, and subtract (27) from
it gives

15 · I(a, b)− 16S2 + S1 ≈ 0 ⇒ I(a, b) ≈ S2 +
S2 − S1

15
. (29)

So, we can of course use this as a better approximation to the integral I(a, b), but we can also
use it for error estimations of S1 and S2, since clearly

I(a, b)− S1 ≈ E1 =
16

15
(S2 − S1) (30)

I(a, b)− S2 ≈ E2 =
1

15
(S2 − S1) (31)

In a code, we will use S2, since this is the best of the two approximations and we do have an
error estimate for it. But since this error estimate is known, we can add it to S2 and get an
even better approximation to I(a,b) for free, that is, we use the approximation (29). In that
case the error is usually overestimated, we get a better solution than we asked for. Which is
hardly any reason to complain.

Example 3.1. We want to approximate

I(0, π/2) =

∫ π/2

0
sin(x)dx = 1.

24

We get

S1 = S(0, π/2) = 1.00228088

S2 = S(0, π/4) + S(π/4, π/2) = 1.00013458.

The error esimates are

E1 = −2.28 · 10−3, E2 = −1.43 · 10−4

The improved approximation is given by:

Q = S2 + E2 = 0.9999916.

So, even in this simple example where f (4) is far from constant over the interval, the error
estimates are quite accurate.

25

Splitting of the interval

The algorithm is quite trivial: First, calculate S1, S2 and E2 over the whole [a, b]. If |E2| ≥ ǫ
then divide the interval in two equal parts, and repeat the procedure on each subinterval with
half of the tolerance on each subinterval. Continue until the error is below the tolerance for
the given subinterval. The strategy may be best illustrated by an example:

Example 3.2. We want to approximate
∫ π/2
0 sinxdx with an error tolerance ǫ = 10−6. The

results are given in the following table:

level a = 0, b = π/2, ǫ = 10−5

1 S1 = 1.00228088, S2 = 1.00013458, |E2| = 1.43 · 10−4

2 a = 0, b = π/4, ǫ = 5 · 10−6 a = π/4, b = π/2, ǫ = 5 · 10−6

S1 = 0.29293264, S2 = 0.29289564 S1 = 0.70720195, S2 = 0.70711265

|E2| = 2.47 · 10−6, Q(0, π/4) = 0.29289318 |E2| = 5.96 · 10−6

3 a = π/4, b = 3π/8 a = 3π/8, b = π/2

ǫ = 2.5 · 10−6 ǫ = 2.5 · 10−6

S1 = 0.32442604 S1 = 0.38268661

S2 = 0.32442352 S2 = 0.38268363

|E2| = 1.68 · 10−7 |E2| = 1.98 · 10−7

Q(π/2, 3π/4) = 0.32442335 Q(3π/4, π/2) = 0.38268343

and the numerical approximation is

Q(0, π/4) +Q(π/4, 3π/8) +Q(3π/4, π/2) = 0.9999996.

The error is about 4 · 10−8 which is well below the tolerance.

The implementation of the code is given in Figure 1.

4 Gauss quadrature and orthogonal polynomials.

The aim of this section is to construct “optimal” quadrature formulas. To be more specific,
given the integral

Iw(f) =

∫ b

a
w(x)f(x)dx (32)

in which w(x) is a fixLed, positive function. We want to approximate this using a quadrature
formula on the form

Qw(f) =

n∑

i=0

Wif(xi).

Such a formula can be constructed as follows: Choose n + 1 distinct nodes, x0, x1, · · · , xn in
the interval [a, b]. Construct the interpolation polynomial

pn(x) =

n∑

i=0

f(xi)Li(x), Li(x) =

n∏

j=0
j 6=i

x− xj
xi − xj

.

26

function simpson_result = simpson (f,a,b,tol ,level ,level_max)

%

% simpson_result = simpson (f,a,b,tol ,0, level_max)

%

% Compute the integral of a function f from a to be within a tolerance tol ,

% using an adaptiv Simpson method.

%

% level_max =10 is a suitable value.

%

level = level +1;

h = b-a;

c = (a+b)/2;

S1 = h*(f(a)+4* f(c)+f(b))/6;

d = (a+c)/2;

e = (c+b)/2;

S2 = h*(f(a)+4* f(d)+2* feval(f,c)+4* f(e) + f(b))/12;

if level >= level_max

simpson_result = S2;

warning (’Maximum␣level␣reached ’);

else

err = (S2 -S1)/15;

if abs(err)<tol

simpson_result = S2+err;

else

left_simpson = simpson (f,a,c,tol/2,level ,level_max);

right_simpson = simpson (f,c,b,tol/2,level ,level_max);

simpson_result = left_simpson + right_simpson ;

end

end

Figure 1: Matlab code for adaptive Simpson

An approximation to the integral is then given by

Qw(f) =

∫ b

a
w(x)pn−1(x)dx =

m∑

i=0

Wif(xi), Wi =

∫ b

a
w(x)Li(x)dx. (33)

The quadrature formula is of precision m if

Iw(p) = Qw(p), for all p ∈ Pm.

From the construction, these quadrature formulas is of precision at least n. The question is
how too choose the nodes xi, i = 0, . . . , n giving m as large as possible. The key concept here
is orthogonal polynomials.

Orthogonal polynomials.

Given two functions f, g ∈ C[a, b]. We define an inner product of these two functions by

< f, g >w=

∫ b

a
w(x)f(x)g(x)dx, w(x) > 0. (34)

27

Thus the definition of the inner product depends on the integration interval [a, b] and a given
weight function w(x). If f, g, h ∈ C[a, b] and α ∈ R then

〈f, g〉w = 〈g, f〉w
〈f + g, h〉w = 〈f, h〉w + 〈g, h〉w
〈αf, g〉w = α〈f, g〉w
〈f, f〉w ≥ 0, and 〈f, f〉w = 0⇔ f ≡ 0.

From an inner product, we can also define a norm on C[a, b] by

‖f‖2w = 〈f, f〉w.

For the inner product (34) we also have

〈xf, g〉w =

∫ b

a
w(x)xf(x)g(x)dx = 〈f, xg〉w. (35)

Our aim is now to create an orthogonal basis for P, that is, create a sequence of polynomials
φk(x) of degree k (no more, no less) for k = 0, 1, 2, 3, . . . such that

〈φi, φj〉w = 0 for all i 6= j.

If we can make such a sequence, then

Pn−1 = span{φ0, φ1, · · · , φn−1} and 〈φn, p〉w = 0 for all p ∈ Pn−1.

Let us now find the sequence of orthogonal polynomials. This is done by a Gram-Schmidt
process:

Let φ0 = 1. Let φ1 = x−B1 where B1 is given by the orthogonality condition:

0 = 〈φ1, φ0〉w = 〈x, 1〉w −B1〈1, 1〉w ⇒ B1 =
〈x, 1〉w
‖1‖2w

.

Let us now assume that we have found φj, j = 0, 1, . . . , k − 1. Then, let

φk = xφk−1 −
k−1∑

j=0

αjφj .

Clearly, φk is a polynomial of degree k, and αj can be chosen so that 〈φk, φi〉w = 0, i =
0, 1, . . . , k − 1, or

〈φk, φi〉w = 〈xφk−1, φi〉w−
k−1∑

j=0

αj〈φi, φj〉w = 〈xφk−1, φi〉w−αi〈φi, φi〉w = 0, i = 0, 1, · · · , k−1.

So αi = 〈xφk−1, φi〉w/〈φi, φi〉w. But we can do even better. Since φk−1 is orthogonal to all
polynomials of degree k − 2 or less, we get

〈xφk−1, φi〉w = 〈φk−1, xφi〉w = 0 for i+ 1 < k − 1.

So, we are left only with αk−1 and αk−2. The following theorem concludes the argument:

28

Theorem 4.1. The sequence of orthogonal polynomials can be defined as follows:

φ0(x) = 1, φ1(x) = x−B1

φk(x) = (x−Bk)φk−1(x)−Ckφk−2(x), k ≥ 2

with

Bk =
〈xφk−1, φk−1〉w
‖φk−1‖2w

, Ck =
〈xφk−1, φk−2〉w
‖φk−2‖2w

=
‖φk−1‖2w
‖φk−2‖2w

The last simplification of Ck is given by:

〈xφk−1, φk−2〉w = 〈φk−1, xφk−2〉w
φk−1 = xφk−2 −Bk−1φk−2 − Ck−1φk−3.

Solve the second with respect to xφk−2, replace it into the right hand side of the first expression,
and use the orthogonality conditions.

Example 4.2. For the inner product

〈f, g〉 =
∫ 1

−1
f(x)g(x)dx

we get

φ0 = 1, 〈xφ0, φ0〉 = 0, 〈φ0, φ0〉 = 2, B1 = 0,

φ1 = x, 〈xφ1, φ1〉 = 0, 〈φ1, φ1〉 =
2

3
, B2 = 0, C2 =

1

3

φ2 = x2 − 1

3
〈xφ2, φ2〉 = 0, 〈φ2, φ2〉 =

8

45
, B3 = 0, C3 =

4

15

φ3 = x3 − 3

5
x, etc.

These are the well known Legendre polynomials.

Example 4.3. Let w(x) = 1/
√
1− x2, and [a, b] = [−1, 1]. We then get the sequence of

polynomials:

φ0 = 1, 〈xφ0, φ0〉w = 0, 〈φ0, φ0〉w = π, B1 = 0,

φ1 = x, 〈xφ1, φ1〉w = 0, 〈φ1, φ1〉w =
π

2
, B2 = 0, C2 =

1

2

φ2 = x2 − 1

2
〈xφ2, φ2〉w = 0, 〈φ2, φ2〉w =

π

2
, B3 = 0, C3 =

1

4

φ3 = x3 − 3

4
x, etc.

These are nothing but the monic Chebyshev polynomials T̃k.

The following theorem will become useful:

Theorem 4.4. Let f ∈ C[a, b], f 6≡ 0 satisfying 〈f, p〉w = 0 for all p ∈ Pk−1. Then f changes
signs at least k times on (a, b).

29

Proof. By contradiction. Suppose that f changes sign only r < k times, at the points t1 <
t2 < · · · < tr. Then f will not change sign on each of the subintervals:

(a, t1), (t1, t2), · · · , (tr−1, tr), (tr, b).

Let p(x) =
∏r

i=1(x − ti) ∈ Pr ⊆ Pk−1. Then p(x) has the same sign properties as f(x), and
f(x)p(x) does not change sign on the interval. Since w > 0 we get

∫ b

a
w(x)f(x)p(x) 6= 0

which contradicts the assumption of the theorem.

Corollary 4.5. The orthogonal polynomial φk has exactly k distinct zeros in (a, b).

Gauss quadrature

We can now state the main result of this note:

Theorem 4.6. Let φn+1 ∈ Pn+1 be orthogonal to Pn, that is

∫ b

a
w(x)φn+1(x)p(x)dx = 0, for all p ∈ Pn.

Chose the nodes xi, i = 0, 1, . . . , n to be the zeros of φn+1, and let Q(f) be the quadrature
formula constructed by (33). Then Q(f) is of precision 2n+ 1, that is

∫ b

a
w(x)p(x)dx = Q(p), for all p ∈ P2n+1. (36)

Proof. Let p ∈ P2n+1. Divide p by φn+1 and let r be the remainer term, thus

p = qφn+1 + r, q, r ∈ Pn.

Since φn+1(xi) = 0, we get that p(xi) = r(xi) for i = 0, 1 · · · , n. But

∫ b

a
w(x)p(x)dx =

=0
︷ ︸︸ ︷
∫ b

a
w(x)φn+1(x)q(x)dx+

∫ b

a
w(x)r(x)dx =

n∑

i=0

Wir(xi)

and
n∑

i=0

Wip(xi) =

n∑

i=0

Wiq(xi)

=0
︷ ︸︸ ︷

φn+1(xi)+

n∑

i=0

Wir(xi) =

n∑

i=0

Wir(xi)

which proves (36).

Quadrature rules constructed by using the zeros of orthogonal polynomials as nodes are called
Gauss quadratures.

For the error of the Gauss-quadratures, we have the following theorem:

30

Theorem 4.7. The error of a Gauss quadrature is

E(f) =

∫ b

a
w(x)f(x)dx −

n∑

i=0

Wif(xi) =
f (2n+2)(ξ)

(2n + 2)!

∫ b

a
w(x)ω2

n+1(x)dx

where ξ ∈ (a, b) and ωn+1(x) =
∏n

i=0(x− xi).

Proof. Recall two results from the earlier discussion on Hermite interpolation (see notes on
divided differences, Theorem 3.9, to be found on It’s learning.)

Given n+1 distinct nodes xi, i = 0, 1, . . . , n there exist one and only one p2n+1 ∈ P2n+1 such
that

f(xi) = p2n+1(xi), f ′(xi) = p′2n+1(xi), i = 0, 1, . . . , n.

Further, the error of this Hermite interpolation polynomial is

f(x)− p2n+1(x) =
f (2n+2)(η(x))

(2n + 2)!
ω2
n+1(x) (37)

It follows that
∫ b

a
w(x)f(x)dx−

∫ b

a
w(x) p2n+1(x)dx =

1

(2n + 2)!

∫ b

a
f (2n+2)(η(x))w(x)ω2

n+1(x)dx (38)

Since p2n+1 ∈ P2n+1 and the quadrature rule is of precision 2n + 1 (Theorem 4.6), we have
that

∫ b

a
w(x) p2n+1(x)dx =

n∑

i=0

Wi p2n+1(xi) =

n∑

i=0

Wif(xi)

Finally, since w(x) > 0 and ω2
n+1(x) ≥ 0 the mean value theorem for integrals can be applied

to the right hand side of (38).

5 Note on Splines.

5.1 Introduction

Assume that we have a set of n+ 1 points {xi, yi}ni=0 and we want to find a curve interpola-
tiong these points. One possibility is of course to use polynomial interplation, that is, find a
polynomial pn ∈ Pn so that

pn(xi) = yi, i = 0, 1, . . . , n.

This may be quite unsatisfactory, as the following picture demonstrate:

0 2 4 6 8 10 12
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

In the picture to the left, polynomial interpolation have been used, to the right, cubic splines.

31

The idea of splines is to split the interval [a, b] by a = t0 < t1 < · · · < tn = b, and let
interpolating curve be a polynomial on each subinterval [ti−1, ti). The points ti, i = 0, 1, . . . , n
are called knots (skjøter på norsk), and they may or may not correspond to the interpolation
nodes xi. The piecewise polynomials are then glued together by some smoothness conditions.
More formally, the definition is:

Definition 5.1. On some interval [a, b] , suppose that n+1 points a = t0 < t1 < · · · < tn = b
has been specified. A spline of degree k is a function S satisfying

1. On each interval [ti−1, ti), S is a polynomial of degree k.

2. S ∈ C(k−1)[a, b].

We will write the spline by

S(x) =







S0(x) x ∈ [t0, t1)

S1(x) x ∈ [t1, t2)
...

Sn−1(x) x ∈ [tn−1, tn]

(39)

where Si ∈ Pk.

Example 5.2. The linear spline interpolating the the points {ti,yi}ni=0 is given by

Si(x) = yi
x− ti+1

ti − ti+1
+ yi+1

x− ti
ti+1 − ti

, x ∈ [ti, ti+1) i = 0, 1, . . . , n− 1, (40)

the straight lines between the points.

5.2 Cubic splines

We will now construct an algorithm for finding the cubic splines, interpolating the points
{ti,yi}ni=0. It means that

Si(x) = aix
3 + bix

2 + cix+ di, x ∈ [ti, ti+1) i = 0, 1, . . . , n− 1

which gives a total of 4n parameters to be determined. A cubic spline is two times continuous
differentiable, thus it has has to satisfy

Si(ti) = yi, Si(ti+1) = yi+1, i = 0, · · · , n− 1 (41)

S′
i−1(ti) = S′

i(ti), i = 1, 2, . . . , n− 1 (42)

S′′
i−1(ti) = S′′

i (ti), i = 1, 2, . . . , n− 1 (43)

a total of 4n− 2 conditions, leaving two free parameters. Some common choices for those are

• Natural cubic splines: S′′(t0) = S′′(tn) = 0.

• Clamped cubic splines: S′(t0) and S′(tn) are specified.

32

• Not-a-knot condition: S′′′
0 (t1) = S′′′

1 (t1) and S′′′
n−2(tn−1) = S′′′

n−1(tn).

• Periodic conditions: S′
0(t0) = S′

n−1(tn) and S′′
0 (t0) = S′′

n−1(tn).

We will now construct an efficient algorithm for solving finding the splines. The idea is as
follows: Since S is a cubic spline, S′′ is a linear spline. Let zi = S′′(ti), i = 0, 1, . . . , n (to be
found). Further, let hi = ti+1 − ti. Then, from 40 we have that

S′′
i (x) =

zi
hi
(ti+1 − x) +

zi+1

hi
(x− ti).

So, by this, (43) is satisfied. Integrating twice gives

Si(x) =
zi
6hi

(ti+1 − x)3 +
zi+1

6hi
(x− ti)3 + Cix+Di.

The integration constants Ci and Di can be determined by (41), the result becomes

Si(x) =
zi
6hi

(ti+1−x)3+
zi+1

6hi
(x−ti)3+

(
yi+1

hi
− zi+1hi

6

)

(x−ti)+
(
yi
hi
− zihi

6

)

(ti+1−x), (44)

We now activate the second condition (42). Notice that

S′
i(ti) = −

hi
3
zi −

hi
6
zi+1 −

yi
hi

+
yi+1

hi

and

S′′
i−1(ti) =

hi
6
zi−1 +

hi−1

3
zi −

yi−1

hi−1
+

yi
hi−1

so these conditions will simply become

hi−1zi−1 + 2(hi + hi−1)zi + hizi+1 =
6

hi
(yi+1 − yi)−

6

hi−1
(yi − yi−1), i = 1, · · · , n− 1.

Let us now assume z0 = zn = 0, the natural spline condition. The whole system now becomes
a tridiagonal system of equations:












u1 h1
h1 u2 h2

h2 u3 h3
. . .

. . .
. . .

hn−3 un−2 hn−2

hn−2 un−1























z1
z2
z3
...

zn−2

zn−1












=












v1
v2
v3
...

vn−2

vn−1












with

hi = ti+1 − ti, ui = 2(hi + hi−1), bi =
6

hi
(yi+1 − yi), vi = bi − bi−1.

Notice that the matrix is diagonal dominant, so the system can be solved by some direct
methods for tridiagonal systems. The complete algortihm becomes:

For natural cubic splines, we do have the following result:

33

Input: n, (ti, yi)
n
i=0

for i = 0, 1, . . . , n− 1 do

hi ← ti+1 − ti
bi ← 6(yi+1 − yi)

end for

u1 ← 2(h0 + h1)
v1 ← b1 − b0
for i = 2, 3, . . . , n− 1 do

ui ← 2(hi + hi−1)− h2i−1/ui−1

vi ← bi − bi−1 − hi−1vi−1/ui−1

end for

zn ← 0
for i = n− 1, n − 2, . . . , 1 do

zi = (vi − hizi+1)/ui
end for

z0 ← 0.

Theorem 5.3. Let f ∈ C2[a, b] . If S is the natural cubic spline interpolating f in the knots
a = t0 < t1 < · · · < tn = b then

∫ b

a

(
S′′(x)

)2
dx ≤

∫ b

a

(
f ′′(x)

)2
dx.

Proof. Let g = f − S. Then

∫ b

a

(
f ′′(x)

)2
dx =

∫ b

a

(
S′′(x)

)2
dx+

∫ b

a

(
g′′(x)

)2
dx+ 2

∫ b

a
g′′(x)S′′(x)dx.

The statement of the theorem is clearly true if we can prove that the last term is positive.
Notice that S′′′

i is constant on each each interval [ti, ti+1), and let us call this constant ai. By
partial integration we get

∫ b

a
S′′g′′dx =

n−1∑

i=0

∫ ti+1

ti

S′′g′′dx =

n−1∑

i=0

{

(S′′(ti+1)g
′(ti+1)− S′′(ti)g

′(ti)−
∫ ti+1

ti

S′′′g′dx

}

= S′′(tn)g
′(tn)− S′′(t0)g

′(t0)−
n−1∑

i=0

ci

∫ ti+1

ti

g′dx =

n−1∑

i=0

ci(g(ti+1)− g(ti)) = 0.

The curvature of a function f is defined as |f ′′|/
(√

1 + (f ′)2
)3

. If we assume that |f ′| ≪ 1

we are left with f ′′ as a approximate measure for the curvature. In this sense, the natural
cubic spline is the smoothest possible function interpolating the given data.

34

6 Numerical solution of ordinary differential equations

6.1 Eulers method.

Let us start this introduction to the numerical solution of ordinary differential equations
(ODEs) by something familiar. Given a scalar (one equation only) ODE

y′ = f(t, y), t0 ≤ t ≤ tend, y(t0) = y0, (45)

in which the function f , the integration interval [t0,tend] and the initial value y0 is assumed
to be given. The solution of this initial value problem (IVP) is a function y(t) on the interval
[t0, tend].

Example 6.1. The ODE/IVP

y′ = −2ty, 0 ≤ t ≤ 1, y(0) = 1.0

has as solution the function
y(t) = e−t2 .

But in many practical situations, it is not possible to express the solution y(t) in closed form,
even if a solution exist. In these cases, a numerical algorithm can give an approximation
to the exact solution. Let us start with Eulers method, which should be known from some
calculus classes. Divide the interval [t0, tend] into Nstep equal subintervals, each of size h =
(tend− t0)/Nstep, and let tn = t0+nh. Euler’s method can be derived by several means. One
possibility is to use the first few terms of the Taylor expansion of the exact solution, which is
given by

y(t0 + h) = y(t0) + hy′(t0) +
1

2
h2y′′(t0) + · · ·+

1

p!
hpy(p)(t0) +

1

(p + 1)!
hp+1y(p+1)(ξ), (46)

where ξ is somewhere between t0 and tend. The integer p ≥ 1 is a number of our own choice,
but we have to require y to be sufficiently differentiable, in this case that y(p+1) exist and is
continuous. If h is small, we may assume that the solution will be completely dominated by
the first two terms, thus

y(t0 + h) ≈ y(t0) + hy′(t0) = y0 + hf(t0, y0),

and we call this approximate solution y1. Starting from the point t1 = t0 + h and y1 we can
repeat the process. We have now developed Euler’s method, given by

yn+1 = yn + hf(tn, yn), n = 0, 1, · · · , Nsteps− 1,

resulting in approximations yn ≈ y(tn).

Example 6.2. Eulers method with h = 0.1 applied to the ODE of Example 6.1 gives

35

tn yn
0.0 1.0000
0.1 1.0000
0.2 0.9800
0.3 0.9408
0.4 0.8844
0.5 0.8136
0.6 0.7322
0.7 0.6444
0.8 0.5542
0.9 0.4655
1.0 0.3817

.

In this case we know the exact solution, y(1.0) = e−1.02 = 0.3679 and the error at the endpoint
is e10 = y(1.0)− y10 = −1.38 · 10−2. If we repeat this experiment (write a MATLAB program
to do so) with different stepsizes, and measure the error at the end of the interval, we get

h eNstep = y(1.0) − yNstep

0.1 −1.38 · 10−2

0.05 −6.50 · 10−3

0.025 −3.16 · 10−3

0.0125 −1.56 · 10−3

.

From this example, it might look like the error at the endpoint eNstep ∼ h, where h =
(tend− t0)/Nstep. But is this true for all problems, and if yes, can we prove it? To do so, we
need to see what kind of errors we have and how they behave. This is illustrated in Figure 2.
For each step an error is made, and these errors are then propagated til the next steps and
accumulate at the endpoint.

Definition 6.3. The local truncation error dn+1 is the error done in one step when starting at
the exact solution y(tn). The global error is the difference between the exact and the numerical
solution at point tn, thus en = y(tn)− yn.

The local truncation error of Euler’s method is

dn+1 = y(tn + h)− y(tn)− hf(tn, y(tn)) =
1

2
h2y′′(ξ),

where ξ ∈ (tn, tn+1). This is given from the Taylor-expansion of y(tn + h) around tn with
p = 1. To see how the global error propagates from one step to the next, the trick is: We have

y(tn + h) = y(tn) + hf(tn, y(tn)) + dn+1,

yn+1 = yn + hf (tn, yn) .

Take the difference of these two, and get

en+1 = en + h (f (tn, y(tn))− f (tn, yn)) + dn+1 = (1 + hfy(tn, v))en + dn+1, (47)

36

t
n

t
n+1t

0
t
end

y
0

y
n

y
n+1

y
Nstep

y(t
n
)

y(t
n+1

) y(t
end

)

d
n+1

e
n

Figure 2: Lady Windermere’s Fan

where v is somewhere between y(tn) and yn. We have here used the mean value theorem
(Theorem 1.8 in Burden and Faires) for f (tn, y(tn))−f (tn, yn). This is about as far as we get
with exact calculations, since ξ in dn+1 as well as v in fy are unknown, and will also change
from one step to the next. So we will look for an upper bound of the global error. We will
first assume upper bounds for our unknown, that is, we assume there exist positive constants
D and L so that

1

2

∣
∣y′′

∣
∣ ≤ D for all t ∈ (t0, tend) and |fy| ≤ L for all t ∈ [t0, tend] and for all y.

Taken the absolute value of both sides of (47) and using the triangle inequality gives

|en+1| ≤ (1 + hL) |en|+Dh2.

Since e0 = 0 (there is no error at the initial point) we can use this formula recursively to get
an upper bound for the error at the endpoint:

|e1| ≤ Dh2,
|e2| ≤ (1 + hL)Dh2 +Dh2

...

|eNstep| ≤
Nstep−1
∑

i=0

(1 + hL)iDh2 =
(1 + hL)Nstep − 1

1 + hL− 1
Dh2.

37

Using the fact that 1 + hL ≤ ehL (why?) and h · Nstep = tend − t0 we finally reach the
conclusion

|eNstep| ≤
(
ehL

)Nstep − 1

L
Dh =

eL(tend−t0) − 1

L
D · h = C · h.

The constant C =
(
ehL − 1

)
D/L depends only on the problem, and we have proved conver-

gence
|y(tend)− yNstep| → 0 when h→ 0 (or Nstep→∞).

Summary: In this section we have

1. Formulated the problem.

2. Developed an algorithm.

3. Implemented and tested it.

4. Proved convergence.

This is fairly much what this course in Numerical Mathematics is about.

6.2 Some background on ODEs.

In this section some useful notation on ordinary differential equations will be presented. We
will also give existence and uniqueness results, but without proofs.

A system of m first order ordinary differential equation is given by

y′ = f(t, y) (48)

or, written out, as

y′1 = f1(t, y1, · · · , ym),

y′2 = f2(t, y1, · · · , ym),

...

y′m = fm(t, y1, · · · , ym).

This is an initial value problem (IVP) if the solution is given at some point t0, thus

y1(t0) = y1,0, y(t0) = y2,0, · · · ym(t0) = ym,0.

Example 6.4. The following equation is an example of the Lotka-Volterra equation:

y′1 = y1 − y1y2,
y′2 = y1y2 − 2y2.

38

An ODE is called autonomous if f is not a function of t, but only of y. The Lotka-Volterra
equation is an example of an autonomous ODE. A nonautonomous system can be made
autonomous by a simple trick, just add the equation

y′m+1 = 1, ym+1(t0) = t0,

and replace t with ym+1. Also higher order ODE/IVPs

u(m) = f(t, u, u′, · · · , u(m−1)), u(t0) = u0, u
′(t0) = u′0, · · · , u(m−1)(t0) = u

(m−1)
0 ,

where u(m) = dmu/dtm, can be written as a system of first order equations, again by a simple
trick: Let

y1 = u, y2 = u′, · · · ym = u(m−1),

and we get the system

y′1 = y2, y1(t0) = u0,

y′2 = y3, y2(t0) = u′0,

...
...

y′m−1 = ym, ym−1(t0) = u
(m−2)
0 ,

y′m = f(t, y1, y2, · · · , ym), ym(t0) = u
(m−1)
0 .

Example 6.5. Van der Pol’s equation is given by

u′′ + µ(u2 − 1)u′ + u = 0.

Using y1 = u and y2 = u′ this equation can be rewritten as

y′1 = y2,

y′2 = µ(1− y21)y2 − y1.
This problem was first introduced by Van der Pol in 1926 in the study of an electronic oscillator.

Before concluding this section, we present some existence and uniqueness results for solution
of ODEs.

Definition 6.6. A function f : R × R
m → R

m satisfies the Lipschitz condition with respect
to y on a domain (a, b)×D where D ⊂ R

m if there exist a constant L so that

‖f(t, y)− f(t, ỹ)‖ ≤ L‖y − ỹ‖, for all t ∈ (a, b), y, ỹ ∈ D.
The constant L is called the Lipschitz constant.

It is not hard to show that the function f satisfies the Lipschitz condition if ∂fi/∂yj , i, j =
1, · · · ,m are continuous and bounded on the domain.

Theorem 6.7. Consider the initial value problem

y′ = f(t, y), y(t0) = y0. (49)

If

1. f(t, y) is continuous in (a, b) ×D,

2. f(t, y) satisfies the Lipschitz condition with respect to y in (a, b)×D.

with given initial values t0 ∈ (a, b) and y0 ∈ D, then (49) has one and only one solution in
(a, b)×D.

39

6.3 Numerical solution of ODEs.

In this section we develop some simple methods for the solution of initial value problems. In
both cases, let us assume that we somehow have found solutions yl ≈ y(tl), for l = 0, 1, · · · , n,
and we want to find an approximation yn+1 ≈ y(tn+1) where tn+1 = tn + h, where h is the
stepsize. Basically, there are two different classes of methods in practical use.

1. One-step methods. Only yn is used to find the approximation yn+1. One-step methods
usually require more than one function evaluation pr. step. They can all be put in a
general abstract form

yn+1 = yn + hΦ(tn, yn;h).

2. Linear multistep methods: yn+1 is approximated from yn−k+1, · · · , yn.

6.3.1 Some examples of one-step methods.

Assume that tn, yn is known. The exact solution y(tn+1) with tn+1 = tn + h of (48) passing
through this point is given by

y(tn + h) = yn +

∫ tn+1

tn

y′(τ)dτ = yn +

∫ tn+1

tn

f(τ, y(τ))dτ. (50)

The idea is to find approximations to the last integral. The simplest idea is to use f(τ, y(τ)) ≈
f(tn, yn), in which case we get the Euler method again:

yn+1 = yn + hf(tn, yn).

The integral can also be approximated by the trapezoidal rule

∫ tn+1

tn

f(τ, y(τ)) =
h

2
(f(tn, yn) + f(tn+1, y(tn+1)).

By replacing the unknown solution y(tn+1) by yn+1 we get the trapezoidal method

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1)) .

Here yn+1 is available by solving a (usually) nonlinear system of equations. Such methods are
called implicit. To avoid this extra difficulty, we could replace yn+1 on the right hand side by
the approximation from Eulers method, thus

ỹn+1 = yn + hf(tn, yn);

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, ỹn+1)) .

This method is called the improved Euler method. Similarly, we could have used the midpoint
rule for the integral,

∫ tn+1

tn

f(τ, y(τ)) =

(

f(tn +
h

2
, y(tn +

h

2
)

)

,

40

and replaced y(tn + h
2) by one half Euler step. The result is the modified Euler method :

ỹn+ 1
2
= yn +

h

2
f(tn, yn),

yn+1 = yn + hf(tn +
h

2
, ỹn+ 1

2
).

Do we gain anything by constructing these methods? Let us solve the problem from Example
6.1 using improved/modified Euler with h = 0.1. For each step, also the global error en =
y(tn)− yn is computed. For comparison, also the result for the Euler method is included.

Euler improved Euler modified Euler
tn yn en yn en yn en
0.0 1.000000 0 1.000000 0 1.000000 0
0.1 1.000000 −9.95 · 10−3 0.990000 4.98 · 10−5 0.990000 4.98 · 10−5

0.2 0.980000 −1.92 · 10−2 0.960696 9.34 · 10−5 0.960597 1.92 · 10−4

0.3 0.940800 −2.69 · 10−2 0.913814 1.17 · 10−4 0.913528 4.03 · 10−4

0.4 0.884352 −3.22 · 10−2 0.852040 1.04 · 10−4 0.851499 6.45 · 10−4

0.5 0.813604 −3.48 · 10−2 0.778765 3.60 · 10−5 0.777930 8.71 · 10−4

0.6 0.732243 −3.46 · 10−2 0.697773 −9.69 · 10−5 0.696636 1.04 · 10−3

0.7 0.644374 −3.17 · 10−2 0.612924 −2.98 · 10−4 0.611507 1.12 · 10−3

0.8 0.554162 −2.69 · 10−2 0.527850 −5.58 · 10−4 0.526202 1.09 · 10−3

0.9 0.465496 −2.06 · 10−2 0.445717 −8.59 · 10−4 0.443904 9.54 · 10−4

1.0 0.381707 −1.38 · 10−2 0.369053 −1.17 · 10−3 0.367153 7.27 · 10−4

As we can see, there is a significant improvement in accuracy, compared with the Euler
method.

6.4 Runge-Kutta methods

The Euler method, as well as the improved and modified Euler methods are all examples on
explicit Runge-Kutta methods (ERK). Such schemes are given by

k1 = f(tn, yn), (51)

k2 = f(tn + c2h, yn + ha21k1),

k3 = f
(
tn + c3h, yn + h(a31k1 + a32k2)

)
,

...

ks = f
(
tn + csh, yn + h

s−1∑

j=1

asjkj
)
,

yn+1 = yn + h

s∑

i=1

biki,

where ci, aij and bi are coefficients defining the method. We always require ci =
∑s

j=1 aij .
Here, s is the number of stages, or the number of function evaluations needed for each step.
The vectors ki are called stage derivatives. The improved Euler method is then a two-stage

41

RK-method, written as

k1 = f(tn, yn),

k2 = f(tn + h, yn + hk1),

yn+1 = yn +
h

2
(k1 + k2).

Also implicit methods, like the trapezoidal rule,

yn+1 = yn +
h

2

(
f(tn, yn) + f(tn + h, yn+1)

)

can be written in a similar form,

k1 = f(tn, yn),

k2 = f
(
tn + h, yn +

h

2
(k1 + k2)

)
,

yn+1 = yn +
h

2
(k1 + k2).

But, contrary to what is the case for explicit methods, a nonlinear system of equations has to
be solved to find k2.

Definition 6.8. An s-stage Runge-Kutta method is given by

ki = f
(
tn + cih, yn + h

s∑

j=1

aijkj
)
, i = 1, 2, · · · , s,

yn+1 = yn + h

s∑

i=1

biki.

The method is defined by its coefficients, which is given in a Butcher tableau

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

cs as1 as2 · · · ass
b1 b2 · · · bs

, where ci =
s∑

j=1

aij , i = 1, · · · , s.

The method is explicit if aij = 0 whenever j ≥ i, otherwise implicit.

Example 6.9. The Butcher-tableaux for the methods presented so far are

0 0

1

0 0 0

1 1 0

1
2

1
2

0 0 0

1
2

1
2 0

0 1

0 0 0

1 1
2

1
2

1
2

1
2

Euler improved Euler modified Euler trapezoidal rule

42

When the method is explicit, the zeros on and above the diagonal is usually ignored. We
conclude this section by presenting the maybe most popular among the RK-methods over
times, The 4th order Runge-Kutta method (Kutta – 1901):

k1 = f(tn, yn)

k2 = f(tn + h
2 , yn + h

2k1)

k3 = f(tn + h
2 , yn + h

2k2)

k4 = f(tn + h, yn + hk3)

yn+1 = yn + h
6 (k1 + 2k2 + 2k3 + k4)

or

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

. (52)

6.5 Order conditions for Runge-Kutta methods.

The following theorem is proved in the exercises.

Theorem 6.10. Let

y′ = f(t, y), y(t0) = y0, t0 ≤ t ≤ tend

be solved by a one-step method

yn+1 = yn + hΦ(tn, yn;h), (53)

with stepsize h = (tend − t0)/Nstep. If

1. the increment function Φ is Lipschitz in y, and

2. the local truncation error dn+1 = O(hp+1) ,

then the method is of order p, that is, the global error at tend satisfies

eNstep = y(tend)− yNstep = O(hp).

A RK method is a one-step method with increment function Φ(tn, yn;h) =
∑s

i=1 biki. It is
possible to show that Φ is Lipschitz in y whenever f is Lipschitz and h ≤ hmax, where hmax is
some predefined maximal stepsize. What remains is the order of the local truncation error. To
find it, we take the Taylor-expansions of the exact and the numerical solutions and compare.
The local truncation error is O(hp+1) if the two series matches for all terms corresponding to
hq with q ≤ p. In principle, this is trivial. In practise, it becomes extremely tedious (give it a
try). Fortunately, it is possible to express the two series very elegant by the use of B-series and
rooted trees. Here, we present how this is done, but not why it works. A complete description
can be found in the note the B-series tutorial.

B-series and rooted trees

We assume that the equation is rewritten in autonomous form

y(t)′ = f(y(t)), y(t0) = y0. (54)

43

The Taylor expansion of the exact solution of (54) is given by

y(t0 + h) = y(t0) + hy′(t0) +
h

2
y′′(t0) + · · ·+

hp

p!
y(p)(t0) + · · · . (55)

From the ODE (54) and repeated use of the chain rule, we get y′ = f , y′′ = fyf , y′′′ = fyyff+
fyfyf , etc. Each higher derivative of y is split into several terms, denoted as elementary
differentials. These can be represented by rooted trees. A node • represents f . A branch out
from a bullet represent the derivative of f with respect to y. As the chain rule apply, this will
always mean that we multiply by y′ = f , represented by a new node on the end of the branch.
We get the following table:

Elementary differentials corresponding trees

y′ = f •
y′′ = fyf ••

y′′′ = fyyff + fyfyf •• • ••
•

yiv = fyyyfff + fyyfyff + fyyffyf •• • • ••
• • •• •

•

+fyyffyf + fyfyyff + fyfyfyf •• •
•

••
• •

••
••

The elementary differentials corresponding to the trees ••
• • and •• •

•
are equal, thus

yiv = fyyyfff + 3fyyfyff + fyfyyff + fyfyfyf.

And we can go on like that. For each tree τ with p nodes we construct a set of total p new
trees with p+1 nodes by adding one new node to an existing node in τ . This procedure might
produce the same tree several times, and the total number of ways to construct a distinct tree
is denoted by α(τ). Let T be the set of all possible, distinct, rooted trees constructed this
way, and let τ ∈ T . A tree with p nodes corresponds to one of the terms in y(p), thus we call
this the order of the tree and denote it |τ |. The elementary differentials corresponding to a
tree is denoted F (τ)(y).

Example 6.11.

For τ = ••
• •

we have |τ | = 4, F (τ)(y) = fyfyyff, α(τ) = 1.

For τ = ••
• • we have |τ | = 4, F (τ)(y) = fyyfyff, α(τ) = 3.

Here, f and its differentials are evaluated in y.

Putting this together: If y(t) is the solution of (54), then

y(p)(tn) =
∑

τ ∈ T
|τ | = p

α(τ)F (τ)(y(tn)).

44

Insert this into (55), and we can write the exact solution as a B-series:

y(tn + h) = y(tn) +
∑

τ∈T

h|τ |

|τ |! α(τ) F (τ)(y(tn)). (56)

The numerical solution after one step can also be written as a B-series, but with some different
coefficients

yn+1 = yn +
∑

τ∈T

h|τ |

|τ |! γ(τ)ϕ(τ) α(τ) F (τ)(yn). (57)

where γ(τ) is an integer, and ϕ(τ) depends on the method coefficients, given in the Butcher
tableau in Definition 6.8. Both can be found quite easily by the following procedure: Take
a tree τ . Label the root with i, and all other non-terminal nodes by j, k, l, · · · . The root
correspond to bi. A branch between a lower node j and an upper node k correspond to
ajk. A terminal node, connected to a node with label k corresponds to ck. φ(τ) is found by
multiplying all these coefficients, and then take the sum over all the indices from 1 to s.

Example 6.12.

The tree τ = •
•
•
• •

•
•

can be labelled •i
j•
k•
• •

•l
•

so that ϕ(τ) =
s∑

i,j,k,l=1

biaijajkc
2
kailcl.

A tree τ can also be described by its subtrees. Let τ = [τ1, τ2, · · · , τl] be the tree composed by
joining the root of the subtrees τ1, τ2, · · · , τl to a joint new root. The term γ(τ) is defined
recursively by

• γ(•) = 1.

• γ(τ) = |τ | · γ(τ1) · · · γ(τl) for τ = [τ1, τ2, · · · , τl].

Example 6.13.

τ = •• = [•], γ(τ) = 2 · 1 = 2

τ = •• • = [•, •], γ(τ) = 3 · 1 · 1 = 3

τ = ••
• •

= [•• •], γ(τ) = 4 · 3 = 12

τ = ••
•• ••• = [••

• •
, ••], γ(τ) = 7 · 12 · 2 = 168

By comparing the two series (56) and (57) with y(tn) = yn we can state the following theorem:

Theorem 6.14. A Runge-Kutta method is of order p if and only if

ϕ(τ) =
1

γ(τ)
∀τ ∈ T, |τ | ≤ p.

45

The order conditions up to order 4 are:

τ |τ | ϕ(τ) = 1/γ(τ)

• 1
∑
bi = 1

•• 2
∑
bici = 1/2

•• • 3
∑
bic

2
i = 1/3

••
•

∑
biaijcj = 1/6

•• • • 4
∑
bic

3
i = 1/4

•• •
•

∑
biciaijcj = 1/8

••
• •

∑
biaijc

2
j = 1/12

••
••

∑
biaijajkck = 1/24

6.5.1 Error control and stepsize selection.

A user of some numerical black box software will usually require one thing: The accuracy of
the numerical solution should be within some user specified tolerance. To accomplish this we
have to measure the error, and if the error is too large, it has to be reduced. For ordinary
differential equations, this means to reduce the stepsize. On the other hand, we would like
our algorithm to be as efficient as possible, that is, to use large stepsizes. This leaves us with
two problems: How to measure the error, and how to get the right balance between accuracy
and efficiency.

Local error estimate. As demonstrated in Figure 2, the global error y(tn)−yn comes from
two sources: the local truncation error and the propagation of errors produced in preceding
steps. This makes it difficult (but not impossible) to measure the global error. Fortunately
it is surprisingly easy to measure the local error, ln+1, the error produced in one step when
starting at (tn, yn), see Figure 3. Let y(t; tn, yn) be the exact solution of the ODE through
the point tn, yn. For a method of order p we get

ln+1 = y(tn + h; tn, yn)− yn+1 = Ψ(tn, yn)h
p+1 +O(hp+2),

where O(hp+1) refer to higher order terms 2 The term Ψ(tn, yn)h
p+1 is called the principal

error term, and we assume that this term is the dominating part of the error. This assumption
is true if the stepsize h is sufficiently small. Taking a step from the same point tn, yn with a
method of order p̂ = p+ 1 gives a solution ŷn+1 with a local error satisfying

y(tn + h; tn, yn)− ŷn+1 = O(hp+2).

2Strictly speaking, the Landau-symbol O is defined by

f(x) = O(g(x)) for x → x0 if limx→x0

‖f(x)‖
‖g(x)‖

< K < ∞

for some unspecified constant K. Thus f(h) = O(hq) means that ‖f(h)‖ ≤ Khq when h → 0, and refer to the

remainder terms of a truncated series.

46

t
n

t
n+1

t
0

l
n+1

d
n+1

y
n+1

y
n

y(t
n
)

y(t
n+1

)

Figure 3: Lady Windermere’s Fan

The local error estimate is given by

len+1 = ŷn+1 − yn+1 = Ψ(tn, yn)h
p+1 +Ohp+2 ≈ ln+1.

Embedded Runge-Kutta pair Given a Runge-Kutta method of order p. To be able to
measure the local error, we need a method of order p + 1 (or higher). But we do not want
to spend more work (in terms of f -evaluations) than necessary. The solution is embedded
Runge-Kutta pairs, which, for explicit methods are given by

0

c2 a21

c3 a31 a32
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1

b̂1 b̂2 · · · b̂s−1 b̂s

The method given by the bi’s is of order p, the error estimating method given by the b̂i’s is
of order p + 1. (Sometimes it is the other way round. The important thing is to have two

47

methods of different order.) The local error estimate of yn+1 is then given by

len+1 = ŷn+1 − yn+1 = h

s∑

i=1

(b̂i − bi)ki.

Example 6.15. A combination of the Euler method and improved Euler will result in the
following pair

0

1 1

1

1
2

1
2

so that

k1 = f(tn, yn), k2 = f(tn + h, yn + hk1), yn+1 = yn + hk1, ln+1 ≈ len+1 =
h

2
(−k1 + k2).

Example 6.16. Assume that you have decided to use improved Euler, which is of order 2,
as your advancing method, and you would like to find an error estimating method of order 3.
There are no 2-stage order 3 ERKs, so you have to add one stage to your method. This gives
a method like

0

1 1

c3 a31 a32

1
2

1
2

b̂1 b̂2 b̂3

where we require c3 = a31 + a32, which give us five free parameters. These have to satisfy all
four order condition for an order 3 method. Using c3 as a free parameter, we get the following
class of 3rd order methods:

b1 =
3c3 − 1

6c3
, b2 =

2− 3c3
6(1− c3)

, b3 =
1

6c3(1− c3)
, a31 = c23, a31 = c3 − c23.

It is also possible to use the highest order method to advance the solution. In this case, we
still measure the local error estimate of the lowest order order solution, but we get a more
accurate numerical solution for free. This idea is called local extrapolation.

MATLAB has two integrators based on explicit Runge-Kutta schemes, ODE23 which is based
on an order 3/2 pair by Bogacki and Shampine, (a 3th order advancing and a 2nd order error
estimating method), and ODE45 based on an order 5/4 pair by Dormand and Prince. Both
use local extrapolation.

Stepsize control Let the user specify a tolerance Tol, and a norm ‖ · ‖ in which the error
is measured. Let us start with tn, yn, and do one step forward in time with a stepsize hn,
giving yn+1 and len+1. If ‖len+1‖ ≤ Tol the step is accepted, and we proceed till the next

48

step, maybe with an increased stepsize. If ‖len+1‖ > Tol the step is rejected and we try again
with a smaller stepsize. In both cases, we would like to find a stepsize hnew which gives a local
error estimate smaller than Tol, but at the same time as close to Tol as possible. To find the
right stepsize, we make one assumption: The function Ψ(tn, yn) of the principle error term do
not change much from one step to the next, thus ‖Ψ(tn, yn)‖ ≈ ‖Ψ(tn+1, yn+1)‖ ≈ C. Then

we have: ‖len+1‖ ≈ C · hp+1
n

we want: Tol ≈ C · hp+1
new

We get rid of the unknown C by dividing the two equations with each other, and hnew can be
solved from

‖len+1‖
Tol

≈
(

hn
hnew

)p+1

.

Rejected steps are wasted work, and it should be avoided. Thus we choose the new stepsize
somewhat conservative. The new stepsize is computed by

hnew = P ·
(

Tol

‖len+1‖

) 1
p+1

hn. (58)

where P is a pessimist factor, usually chosen somewhere in the interval [0.5,0.95]. In the
discussion so far we have used the requirement ‖len+1‖ ≤ Tol, that is error pr. step (EPS).
This do not take into account the fact that the smaller the step is, the more steps you take,
and the local errors from each step adds up. From this point of view, it would make sense to
rather use the requirement le‖n+1 ≤ Tol ·hn, that is error pr. unit step (EPUS). The stepsize
selection is then given by

hnew = P ·
(

Tol

‖len+1‖

) 1
p

hn. (59)

Careful analysis has proved that the local extrapolation together with EPS gives proportion-
ality between the global error and the tolerance. The same is true for the use of the lower
order method to advance the solution in combination with EPUS.

6.6 Stiff equations and linear stability

Example 6.17. Given the ODE

y′ = −1000y, y(0) = 1.

with exact solution
y(t) = e−1000t.

Thus y(t)→ 0 as t→∞. The Euler method applied to this problem yields

yn+1 = yn − 1000hyn = (1− 1000h)yn.

so that yn = (1− 1000h)n. This gives us two situations:

If |1− 1000h| < 1 then yn → 0 as n→∞.
If |1− 1000h| > 1 then |yn| → ∞ as n→∞

49

Clearly, the second situation does not make sense at all, as the numerical solution is unstable
even if the exact solution is stable. We have to choose a stepsize h < 0.002 to get a stable
numerical solution for this problem.

To be more general: Consider a linear ODE

y′ =My, y(0) = y0, (60)

where M is a constant, m×m matrix. We assume that M is diagonalizable, that is

V −1MV = Λ

where
Λ = diag{λ1, λ2, · · · , λm}, V = [v1, v2, · · · , vm],

where λi, i = 1, · · · ,m are the eigenvalues of M and vi are the corresponding eigenvectors.
By premultiplying (60) with V −1, we get

V −1y′ = V −1MV V −1y, V −1y(t0) = V −1y0

or, using u = V −1y,
u′ = Λu, u(t0) = V −1y0 = u0.

The system is now decoupled, and can be written componentwise as

u′i = λiui, ui(0) = ui,0, λi ∈ C, i = 1, · · · ,m. (61)

We have to accept the possibility of complex eigenvalues, however, as M is a real matrix, then
complex eigenvalues appears in complex conjugate pairs. In the following, we will consider
the situation when

Re(λi) < 0 for i = 1, · · · ,m, thus y(t)→ 0 as t→∞. (62)

Apply the Euler method to (60):

yn+1 = yn + hMyn.

We can do exactly the same linear transformations as above, so the system can be rewritten
as

ui,n+1 = (1 + hλi)ui,n, i = 1, · · · ,m.
For the numerical solution to be stable, we have to require

|1 + hλi| ≤ 1, for all the eigenvalues λi. (63)

(The case |1+hλih| = 1 is included, as this is sufficient to prevent the solution from growing.)

Example 6.18. Given

y′ =




−2 1

998 −999



 y, y(0) =




1

1





with exact solution y1(t) = y2(t) = e−t. The matrix has eigenvalues −1 and −1000. The initial
values are chosen so that the fast decaying mode is missing in the exact solution. This problem
is solved by Eulers method, with two almost equal stepsizes, h = 0.0021 and h = 0.002. The
difference is striking, but completely in correspondence with (63) and the result of Example
5.1.

50

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

t

so
lu

tio
n

Euler, h=0.002100

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

t

so
lu

tio
n

Euler, h=0.002000

The MATLAB-file linsys used to produce these plots are given on the web-page. Use it to
do your own experiments.

Example 6.18 is a typical example of a stiff equation. The stepsize is restricted by a fast
decaying component.

Example 6.19. Let

M =




−2 −2
1 0



 with eigenvalues λ1,2 = −1± i.

The requirement (63) becomes

|1 + h(−1± i)| ≤ 1 or (1− h)2 + h2 ≤ 1 which is satisfied if and only if 0 ≤ h ≤ 1.

Stiffness occurs in situations with fast decaying solutions (transients) in combination with
slow solutions. If you solve an ODE by an adaptive explicit scheme, and the stepsize becomes
unreasonable small, stiffness is the most likely explanation. If the stepsizes in additions seems
to be independent of your choice of tolerances, then you can be quite sure. The stepsize is
restricted by stability related to the transients, and not by accuracy. The effect is demonstrated
in the MATLAB-file teststiffness available on the web page. The backward Euler method
is one way to overcome this problem:

yn+1 = yn + hf(tn+1, yn+1) (64)

or, applied to the problem of (61)

ui,n+1 = ui,n + hλui,n+1, ⇒ ui,n+1 =
1

1− hλi
ui,n.

Since |1/(1−hλi)| ≤ 1 whenever Re(λi) ≤ 0 there is no stepsize restriction caused by stability
issues. In fact, ui,n+1 → 0 as Re(hλi) → −∞, so fast transients decay quickly, as they are
supposed to do. But this nice behaviour is not for free: for a nonlinear ODE a nonlinear
system of equations has to be solved for each step. We will return to this topic later.

51

Linear stability theory for Runge-Kutta methods.

Given the linear test equation
y′ = λy, λ ∈ C. (65)

Thus λ = α+ iβ. The solution can be expressed by

y(tn + h) = eαheiβhy(tn).

Clearly, the solution is stable if α ≤ 0, that is λ ∈ C
−. For the numerical solution we then

require the stepsize h to be chosen so that

|yn+1| ≤ |yn| wheneverλ ∈ C
− (66)

When a RK method is applied (65), we simply get

yn+1 = R(z)yn, z = hλ

where R is a polynomial or a rational function. R is called the stability function of the RK
method. The numerical solution is stable if |R(z)| ≤ 1, otherwise it is unstable. This motivates
the following definition of the region of absolute stability as

D = {z ∈ C : |R(z)| ≤ 1}.

The condition (66) is satisfied for all h > 0 if

C
− ⊆ D,

Methods satisfying this condition are called A-stable. The Backward Euler method (64) is an
example of an A-stable method.

Example 6.20. A 2-stage ERK applied to (65) is given by:

k1 = λyn, k2 = λ(yn + ha21λyn), yn+1 = yn + hλ(b1 + b2)yn + (hλ)2b2a21yn

If this method is of order 2, then b1 + b2 = 1 and b2a21 = 1/2, so that

R(z) = 1 + z +
1

2
z2.

The stability function of an s-stage ERKs is a polynomial of degree s. As a consequence, no
ERKs can be A-stable! If the order of the method is s, then

R(z) =

s∑

i=0

zi

i!
.

See Figure 4 for plots of the stability regions. But it has been proved that ERK with p = s
only exist for s ≤ 4. To get an order 5 ERK, 6 stages are needed.

Example 6.21. The trapezoidal rule (see section 3.1) applied to (65) gives

yn+1 = yn +
h

2
(λyn + λyn+1) ⇒ R(z) =

1 + z

1− z .

In this case D = C
−, which is perfect.

52

K3 K2 K1 0 1

K3

K2

K1

1

2

3

K3 K2 K1 0 1

K3

K2

K1

1

2

3

p = s = 1 p = s = 2

K3 K2 K1 0 1

K3

K2

K1

1

2

3

K3 K2 K1 0 1

K3

K2

K1

1

2

3

p = s = 3 p = s = 4

K1 0 1 2 3

K3

K2

K1

1

2

3

K1 0 1 2 3

K3

K2

K1

1

2

3

Backward Euler Trapezoidal rule

Figure 4: Stability regions in C
−: The first four are the stability regions for explicit RK

methods of order p = s. The white regions are stable, the grey unstable.

53

To summarise:

• For a given λ ∈ C
−, choose a stepsize h so that hλ ∈ D.

• If your problem is stiff, use an A-stable method.

• There are no A-stable explicit methods.

6.7 Linear multistep methods

A k-step linear multistep method (LMM) applied to the ODE

y′ = f(t, y), y(t0) = y0, t0 ≤ t ≤ tend.

is given by
k∑

l=0

αlyn+l = h
k∑

l=0

βlfn+l, (67)

where αl, βl are the method coefficients, fj = f(tj, yj) and tj = t0+ jh, h = (tend− t0)/Nstep.
Usually we require

αk = 1 and |α0|+ |β0| 6= 0.

To get started with a k-step method, we also need starting values yl ≈ y(tl), l = 0, 1, · · · , k−1.
A method is explicit if βk = 0, otherwise implicit. The leapfrog method

yn+2 − yn = 2hf(tn+1, yn+1) (68)

and the method given by

yn+2 − yn+1 = h

(
3

2
fn+1 −

1

2
fn

)

(69)

are both examples of explicit 2-step methods.

Example 6.22. Given the problem

y′ = −2ty, y(0) = 1

with exact solution y(t) = e−t2 . Let h = 0.1, and y1 = e−h2
. This problem is solved by (69),

54

and the numerical solution and the error is given by

tn yn |en|

0.0 1.000000 0.00

0.1 0.990050 0.00

0.2 0.960348 4.41 · 10−4

0.3 0.912628 1.30 · 10−3

0.4 0.849698 2.45 · 10−3

0.5 0.775113 3.69 · 10−3

0.6 0.692834 4.84 · 10−3

0.7 0.606880 5.75 · 10−3

0.8 0.521005 6.29 · 10−3

0.9 0.438445 6.41 · 10−3

1.0 0.361746 6.13 · 10−3

.

The corresponding MATLAB code is given in lmm.m.

6.7.1 Consistency and order.

We define the local discretization error τn+k(h) by

hτn+k(h) =
k∑

l=0

(
αly(tn+l)− hβly′(tn+l)

)
. (70)

You can think about the hτn+k as the defect obtained when plugging the exact solution into
the difference equation (67). A method is consistent if τn+k(h) →

h→0
0. The term hτn+k(h) can

be written as a power series in h

hτn+k(h) = C0y(tn) + C1hy
′(tn) + C2h

2y′′(tn) + · · · + Cqh
qy(q)(tn) + · · · ,

by expanding y(tn + lh) and y′(tn + lh) into their Taylor series around tn,

y(tn + lh) = y(tn) + (lh)y′(tn) +
1

2
(lh)2y′′(tn) + · · ·+

(lh)q

q!
y(q)(tn) + · · ·

y′(tn + lh) = y′(tn) + (lh)y′′(tn) +
1

2
(lh)2y′′′(tn) + · · · +

(lh)q−1

q − 1!
y(q)(tn) + · · ·

for sufficiently differentiable solutions y(t). Insert this into (70), get the following expressions
for Cq:

C0 =

k∑

l=0

αl, Cq =
1

q!

k∑

l=0

(
lqαl − qlq−1βl

)
, q = 1, 2, · · · . (71)

55

The method is consistent if C0 = C1 = 0. It is of order p if

C0 = C1 = · · · = Cp = 0, Cp+1 6= 0.

The constant Cp+1 is called the error constant.

Example 6.23. The LMM (69) is defined by

α0 = 0, α1 = −1, α2 = 1, β0 = −
1

2
, β1 =

3

2
, β2 = 0,

thus

C0 = α0 + α1 + α2 = 0.

C1 = α1 + 2α2 − (β0 + β1 + β2) = 0

C2 =
1

2!

(
α1 + 22α2 − 2(β1 + 2β2)

)
= 0

C3 =
1

3!

(
α1 + 23α2 − 3(β1 + 22β2)

)
=

5

12
.

The method is consistent and of order 2.

Example 6.24. Is it possible to construct an explicit 2-step method of order 3? There are 4
free coefficients α0, α1, β0, β1, and 4 order conditions to be solved (C0 = C1 = C2 = C3 = 0).
The solution is

α0 = −5, α1 = 4, β0 = 2, β1 = 4.

Test this method on the ODE of Example 2.1. (Replace the method coefficients in lmm.m.) The
result is nothing but disastrous. Taking smaller steps only increase the problem.

To see why, you have to know a bit about how to solve difference equations.

6.7.2 Linear difference equations

A linear difference equation with constant coefficients is given by

k∑

l=0

αlyn+l = ϕn, n = 0, 1, 2, · · · . (72)

The solution of this equation is a sequence {yn} of numbers (or vectors). Let {ỹn} be the
general solution of the homogeneous problem

k∑

l=0

αlyn+l = 0. (73)

Let ψn be one particular solution of (72). The general solution of (72) is then {yn} where
yn = ỹn + ψn. To find a unique solution, we will need the starting values y0, y1, · · · , yk−1.

Let us try ỹn = rn as a solution of the homogeneous equation (73). This is true if

k∑

l=0

αlr
n+l = rn

k∑

l=0

αlr
l = 0.

56

The polynomial ρ(r) =
∑k

l=0 αlr
l is called the characteristic polynomial, and {rn} is a solu-

tion of (73) if r is a root of ρ(r). The kth degree polynomial ρ(r) has k roots altogether,
r1, r2, · · · , rk, they can be distinct and real, they can be distinct and complex, in which case
they appear in complex conjugate pairs, or they can be multiple. In the latter case, say
r1 = r2 = · · · = rµ we get a set of linear independent solutions {rn1 }, {nrn1 }, · · · , {nµ−1rn1 }.
Altogether we have found k linear independent solutions {ỹn,l} of the homogeneous equation,
and the general solution is given by

yn =

k∑

l=1

κlỹn,l + ψn.

The coefficients κl can be determined from the starting values.

Example 6.25. Given

yn+4 − 6yn+3 + 14yn+2 − 16yn+1 + 8yn = n

y0 = 1, y1 = 2, y2 = 3 y3 = 4.

The characteristic polynomial is given by

ρ(r) = r4 − 6r3 + 14r2 − 16r + 8

with roots r1 = r2 = 2, r3 = 1 + i, r4 = 1 − i. As a particular solution we try ψn = an + b.
Inserted into the difference equation we find this to be a solution if a = 1, b = 2. The general
solution has the form

yn = κ12
n + κ2n2

n + κ3(1 + i)n + κ4(1− i)n + n+ 2.

From the starting values we find that κ1 = −1, κ2 = 1
4 , κ3 = −i/4 and κ4 = i/4. So, the

solution of the problem is

yn = 2n
(n

4
− 1

)

− i(1 + i)n

4
+
i(1 − i)n

4
+ n+ 2

= 2n
(n

4
− 1

)

− 2
n−2
2 sin

(nπ

4

)

+ n+ 2.

Example 6.26. The homogeneous part of the difference equation of Example 6.24 is

ρ(r) = r2 + 4r − 5 = (r − 1)(r + 5).

One root is 5. Thus, one solution component is multiplied by a factor -5 for each step, inde-
pendent of the stepsize. Which explain why this method fails.

6.7.3 Zero-stability and convergence

Let us start with the definition of convergence. As before, we consider the error at tend, using
Nstep steps with constant stepsize h = (tend − t0)/Nstep.

Definition 6.27.

57

• A linear multistep method (67) is convergent if, for all ODEs satisfying the conditions
of Theorem 6.7 we get

yNstep →
h→0

y(tend), whenever yl →
h→0

y(t0 + lh), l = 0, 1, · · · , k − 1.

• The method is convergent of order p if, for all ODEs with f sufficiently differentiable,
there exists a positive h0 such that for all h < h0

‖y(tend−yNstep‖ ≤ Khp whenever ‖y(t0+ lh)−yl‖ ≤ K0h
p, l = 0, 1, · · · , k−1.

The first characteristic polynomial of an LMM (67) is

ρ(r) =

k∑

l=0

αlr
l,

with roots r1, r2, · · · , rk. From the section on difference equation, it follows that for the
boundedness of the solution yn we require:

1. |ri| ≤ 1, for i = 1, 2, · · · , k.

2. |ri| < 1 if ri is a multiple root.

A method satisfying these two conditions is called zero-stable.

We can now state (without proof) the following important result:

Theorem 6.28. (Dahlquist)

Convergence ⇔ Zero-stability + Consistency.

For a consistent method, C0 =
∑k

l=0 αl = 0 so the characteristic polynomial ρ(r) will always
have one root r1 = 1.

The zero-stability requirement puts a severe restriction on the maximum order of a convergent
k-step method:

Theorem 6.29. (The first Dahlquist-barrier) The order p of a zero-stable k-step method
satisfies

p ≤ k + 2 if k is even,

p ≤ k + 1 if k is odd,

p ≤ k if βk ≤ 0.

Notice that the last line include all explicit LMMs.

58

6.8 Adams-Bashforth-Moulton methods

The most famous linear multistep methods are constructed by the means of interpolation. For
instance by the following strategy:

The solution of the ODE satisfy the integral equation

y(tn+1)− y(tn) =
∫ tn+1

tn

f(t, y(t))dt. (74)

Assume that we have found fi = f(ti, yi) for i = n−k+1, · · · , n, with ti = t0+ ih. Construct
the polynomial of degree k − 1, satisfying

pk−1(ti) = f(ti, yi), i = n− k + 1, . . . , n.

The interpolation points are equidistributed (constant stepsize), so Newton’s backward differ-
ence formula can be used in this case (see Exercise 2), that is

pk−1(t) = pk−1(tn + sh) = fn +

k−1∑

j=1

(−1)j
(−s
j

)

∇jfn

where

(−1)j
(−s
j

)

=
s(s+ 1) · · · (s+ j − 1)

j!

and
∇0fn = fn, ∇jfn = ∇j−1fn −∇j−1fn−1.

Using yn+1 ≈ y(tn+1). yn ≈ y(tn) and pk−1(t) ≈ f(t, y(t)) in (74) gives

yn+1 − yn
∫ tn+1

tn

pk−1(t)dt = h

∫ 1

0
pk−1(tn + sh)ds

= hfn + h
k−1∑

j=1

(

(−1)j
∫ 1

0

(−s
1

)

ds

)

∇jfn. (75)

This gives the Adams-Bashforth methods

yn+1 − yn = h
k−1∑

j=0

γj∇jfn, γ0 = 1, γj = (−1)j
∫ 1

0

(−s
j

)

ds.

Example 6.30. We get

γ0 = 1, γ1 =

∫ 1

0
sds =

1

2
, γ2 =

∫ 1

0

s(s+ 1)

2
ds =

5

12

and the first few methods becomes:

yn+1 − yn = hfn

yn+1 − yn = h

(
3

2
fn −

1

2
fn−1

)

yn+1 − yn = h

(
23

12
fn −

4

3
fn−1 +

5

12
fn−2

)

59

A k-step Adams-Bashforth method is explicit, has order k (which is the optimal order for
explicit methods) and it is zero-stable. In addition, the error constant Cp+1 = γk. Implicit
Adams methods are constructed similarly, but in this case we include the (unknown) point
(tn+1, fn+1) into the set of interpolation points. So the polynomial

p∗k(t) = p∗k(tn + sh) = fn+1 +

k∑

j=1

(−1)j
(−s+ 1

j

)

∇jfn+1

interpolates the points (ti, fi), i = n− k+1, . . . , n+1. Using this, we get the Adams-Moulton
methods

yn+1 − yn = h
k∑

j=0

γ∗j∇jfn+1, γ∗0 = 1, γ∗j = (−1)j
∫ 1

0

(−s+ 1

j

)

ds.

Example 6.31. We get

γ∗0 = 1, γ∗1 =

∫ 1

0
(s− 1)ds = −1

2
, γ∗2 =

∫ 1

0

(s− 1)s

2
ds = − 1

12

and the first methods becomes

yn+1 − yn = hfn+1 (Backward Euler)

yn+1 − yn = h

(
1

2
fn+1 +

1

2
fn

)

(Trapezoidal method)

yn+1 − yn = h

(
5

12
fn+1 +

2

3
fn −

1

12
fn−1

)

.

A k-step Adams-Moulton method is implicit, of order k + 1 and is zero-stable. The error
constant Cp+1 = γ∗k+1. Despite the fact that the Adams-Moulton methods are implicit, they
have some advantages compared to their explicit counterparts: They are of one order higher,
the error constants are much smaller, and the linear stability properties (when the methods
are applied to the linear test problem y′ = λy) are much better.

k 0 1 2 3 4 5 6

γk 1 1
2

5
12

3
8

251
720

95
288

19087
60480

γ∗k 1 −1
2 − 1

12 − 1
24 − 19

720 − 3
160 − 863

60480

Table 1: The γ’s for the Adams methods.

6.9 Predictor-corrector methods

A predictor-corrector (PC) pair is a pair of one explicit (predictor) and one implicit (corrector)
methods. The nonlinear equations from the application of the implicit method are solved by
a fixed number of fixed point iterations, using the solution by the explicit method as starting
values for the iterations.

60

Example 6.32. We may construct a PC method from a second order Adams-Bashforth scheme
and the trapezoidal rule as follows:

y
[0]
n+1 = yn +

h

2
(3fn − fn−1) (P : Predictor)

for l = 0, 1, . . . ,m

f
[l]
n+1 = f(tn+1, y

[l]
n+1) (E : Evaluation)

y
[l+1]
n+1 = yn +

h

2
(f

[l]
n+1 + fn) (C : Corrector)

end

yn+1 = y
[m]
n+1

fn+1 = f(tn+1, yn+1). (E : Evaluation)

Such schemes are commonly referred as P(EC)mE schemes.

The predictor and the corrector is often by the same order, in which case only one or two
iterations are needed.

Error estimation in predictor-corrector methods.

The local discretization error of some LMM is given by

hτn+1 =

k∑

l=0

(αly(tn−k+1+l − hβly′(tn−k+1+l)) = hp+1Cp+1y
(p+1)(tn−k+1) +O(hp+2).

But we can do the Taylor expansions of y and y′ around tn rather than tn−k+1. This will not
alter the principal error term, but the terms hidden in the expression O(hp+2) will change.
As a consequence, we get

hτn+1 = hp+1Cp+1y
(p+1)(tn) +O(hp+2).

Assume that yi = y(ti) for i = n− k + 1, . . . , n, and αk = 1. Then

hτn+1 = y(tn+1)− yn+1 +O(hp+2) = hp+1Cp+1y
(p+1)(tn) +O(hp+2).

Assume that we have chosen a predictor-corrector pair, using methods of the same order p.
Then

(P) y(tn+1)− y[0]n+1 ≈ hp+1C
[0]
p+1y

(p+1)(tn),

(C) y(tn+1)− yn+1 ≈ hp+1Cp+1y
(p+1)(tn),

and
yn+1 − y[0]n+1 ≈ hp+1(C

[0]
p+1 − Cp+1)y

(p+1)(tn).

From this we get the following local error estimate for the corrector, called Milne’s device:

y(tn+1)− yn+1 ≈
Cp+1

C
[0]
p+1] − Cp+1

(yn+1 − y[0]n+1).

61

Example 6.33. Consider the PC-scheme of Example 6.32. In this case

C
[0]
p+1 =

5

12
, Cp+1 = −

1

12
, so

Cp+1

C
[0]
p+1] − Cp+1

= −1

6
.

Apply the scheme to the linear test problem

y′ = −y, y(0) = 1,

using y0 = 1, y1 = e−h and h = 0.1. One step of the PC-method gives

l y
[l]
2 |y2 − y[l]2 | |y(0.2) − y

[l]
2 | 1

6 |y
[l]
2 − y

[0]
2 |

0 0.819112 4.49 · 10−4 3.81 · 10−4

1 0.818640 2.25 · 10−5 9.08 · 10−5 7.86 · 10−5

2 0.818664 1.12 · 10−6 6.72 · 10−5 7.47 · 10−5

3 0.818662 5.62 · 10−8 6.84 · 10−5 7.49 · 10−5

After 1-2 iterations, the iteration error is much smaller than the local error, and we also
observe that Milne’s device gives a reasonable approximation to the error.

Remark Predictor-corrector methods are not suited for stiff problems. You can see this
by e.g. using the trapezoidal rule on y′ = λy. The trapezoidal rule has excellent stability
properties. But the iteration scheme

y
[l+1]
n+1 = yn +

h

2
λ(y

[l]
n+1 + yn)

will only converge if |hλ/2| < 1.

62

