Department of Mathematical
Sciences

1 Given an ordinary differential equation

$$
\begin{equation*}
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}, \quad t_{0} \leq t \leq t_{\text {end }} . \tag{1}
\end{equation*}
$$

You can assume that f satisfies the Lipschitz condition

$$
\|f(t, y)-f(t, \tilde{y})\| \leq L\|y-\tilde{y}\| .
$$

A one-step method for solving this differential equation can be described by

$$
\begin{equation*}
y_{n+1}=y_{n}+h \Phi\left(t_{n}, y_{n} ; h\right), \quad n=0,1, \ldots, N-1, \quad h=\frac{t_{\mathrm{end}}-t_{0}}{N} \tag{2}
\end{equation*}
$$

Assume the following:

- The local truncation error given by

$$
d_{n+1}=y\left(t_{n+1}\right)-y\left(t_{n}\right)-h \Phi\left(t_{n}, y\left(t_{n}\right) ; h\right)
$$

satisfies

$$
\left\|d_{n+1}\right\| \leq D h^{p+1}
$$

where D is a positive constant.

- The function Φ is Lipschitz continuous, with Lipschitz constant M, i.e.

$$
\begin{equation*}
\left\|\Phi\left(t_{n}, y ; h\right)-\Phi\left(t_{n}, \tilde{y} ; h\right)\right\| \leq M\|y-\tilde{y}\| . \tag{3}
\end{equation*}
$$

a) Show that in this case, the global error in $t_{\text {end }}$ satisfies

$$
\left\|e_{N}\right\|=\left\|y\left(t_{\text {end }}\right)-y_{N}\right\| \leq C h^{p},
$$

where C is a positive constant depending on M, D and the interval $t_{\text {end }}-t_{0}$.
b) Assume that a two-stage explicit Runge-Kutta method given by the Butcher tableau

0		
c_{2}	c_{2}	
	b_{1}	b_{2}

is used to solve (11). Show that the method can be written on the form (2). Now assume that $h \leq h_{\text {max }}$ and show that Φ satisfies the Lipschitz condition in y, with Lipschitz constant M that depends on the method coefficients c_{2}, b_{1} and b_{2}, as well as L and $h_{\text {max }}$.

02 Kutta's method from 1901 is the most famous of all explicit Runge-Kutta pairs, given by the following Butcher tableau:

0				
$\frac{1}{2}$	$\frac{1}{2}$			
$\frac{1}{2}$	0	$\frac{1}{2}$		
1	0	0	1	
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

a) Verify that the method has order 4 by checking all 8 order conditions.
b) An alluring thought is to now find a new set of weights, say \hat{b}_{s} such that the accompanying method is of order 3 , for error estimates and step length control. Try to find such a set of \hat{b}_{s}.

3 a) Find the eigenvalues of the matrix

$$
M=\left(\begin{array}{cc}
-10 & -10 \\
40 & -10
\end{array}\right)
$$

b) Assume that you are to solve the differential equation

$$
y^{\prime}=M y, \quad y(0)=y_{0}
$$

using the improved Euler method. What is the largest step size $h_{\text {max }}$ you can use?
c) Solve the equation

$$
y^{\prime}=M y+g(t), \quad 0 \leq t \leq 10
$$

with

$$
g(t)=(\sin (t), \cos (t))^{T}, \quad y(0)=\left(\frac{5210}{249401}, \frac{20259}{249401}\right)^{T}
$$

by using impEuler.m. Choose step sizes a little smaller than and a little larger than $h_{\max }$. What do you observe?

