
Adaptive Simpson

We now want to find an approximation Q(a, b) to the integral I(a, b) =
∫ b
a f(x)dx so that the

error is below a given tolerance ε, thus

|I(a, b)−Q(a, b)| . ε,

To do this, we will need a strategy for

• estimating the error I(a, b)−Q(a, b).

• Divivde the interval [a, b] interval into subintervals a = X0 < X1 < · · · < XM = b so
that

|I(Xk, Xk+1)−Q(Xk, Xk+1)| .
Xk+1 −Xk

b− a
ε.

And we will use Simpsons method as an example here, but the strategy is applicable for other
methods as well.

Error estimate

Simpsons formula is given by

S(a, b) =
b− a
6

(
f(a) + 4f(c) + f(b)

)
, c =

a+ b

2
.

and the error is given by

I(a, b)− S(a, b) = −(b− a)5

2880
f (4)(ξ), ξ ∈ (a, b).

Assume now that the interval [a, b] is small, so that f (4) is almost constant over this interval.
In that case, the formula above becomes

I(a, b)− S(a, b) ≈ C(b− a)5, C ≈ − f (4)

2880
(1)

Next, let us split the interval in two equal parts: [a, c] and [c, b] and integrate each subinterval
by Simpsons method:

S2 = S(a, c)+S(c, b) =
(b− a)
2 · 6

(
f(a)+4f(d)+2f(c)+4f(e)+f(b)

)
, d =

a+ c

2
, e =

c+ b

2

and the error is

I(a, b)− S2 = −
(b− a)5

25 · 2880
f (4)(ξ1)−

(b− a)5

25 · 2880
f (4)(ξ2) ≈ C ·

1

24
(b− a)5 (2)

For notational convenience, use S1 = S(a, b). Multiplying (2) by 16, and subtract (1) from it
gives

15 · I(a, b)− 16S2 + S1 ≈ 0 ⇒ I(a, b) ≈ S2 +
S2 − S1

15
. (3)

1

So, we can of course use this as a better approximation to the integral I(a, b), but we can also
use it for error estimations of S1 and S2, since clearly

I(a, b)− S1 ≈ E1 =
16

15
(S2 − S1) (4)

I(a, b)− S2 ≈ E2 =
1

15
(S2 − S1) (5)

In a code, we will use S2, since this is the best of the two approximations and we do have an
error estimate for it. But since this error estimate is known, we can add it to S2 and get an
even better approximation to I(a,b) for free, that is, we use the approximation (3). In that
case the error is usually overestimated, we get a better solution than we asked for. Which is
hardly any reason to complain.

Example 0.1. We want to approximate

I(0, π/2) =

∫ π/2

0
sin(x)dx = 1.

We get

S1 = S(0, π/2) = 1.00228088

S2 = S(0, π/4) + S(π/4, π/2) = 1.00013458.

The error esimates are

E1 = −2.28 · 10−3, E2 = −1.43 · 10−4

The improved approximation is given by:

Q = S2 + E2 = 0.9999916.

So, even in this simple example where f (4) is far from constant over the interval, the error
estimates are quite accurate.

2

Splitting of the interval

The algorithm is quite trivial: First, calculate S1, S2 and E2 over the whole [a, b]. If |E2| ≥ ε
then divide the interval in two equal parts, and repeat the procedure on each subinterval with
half of the tolerance on each subinterval. Continue until the error is below the tolerance for
the given subinterval. The strategy may be best illustrated by an example:

Example 0.2. We want to approximate
∫ π/2
0 sinxdx with an error tolerance ε = 10−6. The

results are given in the following table:

level a = 0, b = π/2, ε = 10−5

1 S1 = 1.00228088, S2 = 1.00013458, |E2| = 1.43 · 10−4

2 a = 0, b = π/4, ε = 5 · 10−6 a = π/4, b = π/2, ε = 5 · 10−6

S1 = 0.29293264, S2 = 0.29289564 S1 = 0.70720195, S2 = 0.70711265

|E2| = 2.47 · 10−6, Q(0, π/4) = 0.29289318 |E2| = 5.96 · 10−6

3 a = π/4, b = 3π/8 a = 3π/8, b = π/2

ε = 2.5 · 10−6 ε = 2.5 · 10−6

S1 = 0.32442604 S1 = 0.38268661

S2 = 0.32442352 S2 = 0.38268363

|E2| = 1.68 · 10−7 |E2| = 1.98 · 10−7

Q(π/2, 3π/4) = 0.32442335 Q(3π/4, π/2) = 0.38268343

and the numerical approximation is

Q(0, π/4) +Q(π/4, 3π/8) +Q(3π/4, π/2) = 0.9999996.

The error is about 4 · 10−8 which is well below the tolerance.

The implementation of the code is given in Figure 1.

3

function simpson_result = simpson(f,a,b,tol ,level ,level_max)
%
% simpson_result = simpson(f,a,b,tol ,0, level_max)
%
% Compute the integral of a function f from a to be within a tolerance tol ,
% using an adaptiv Simpson method.
%
% level_max =10 is a suitable value.
%
level = level +1;
h = b-a;
c = (a+b)/2;
S1 = h*(f(a)+4*f(c)+f(b))/6;
d = (a+c)/2;
e = (c+b)/2;
S2 = h*(f(a)+4*f(d)+2* feval(f,c)+4*f(e) + f(b))/12;
if level >= level_max

simpson_result = S2;
warning(’Maximum␣level␣reached ’);

else
err = (S2-S1)/15;
if abs(err)<tol

simpson_result = S2+err;
else

left_simpson = simpson(f,a,c,tol/2,level ,level_max);
right_simpson = simpson(f,c,b,tol/2,level ,level_max);
simpson_result = left_simpson+right_simpson;

end
end

Figure 1: Matlab code for adaptive Simpson

4

