
TMA4215, fall semester 2011, Numerical
methods for linear algebra

Elena Celledoni

1 Introduction

We consider the approximation of the solution of linear systems of algebraic
equations with n equations and n unknowns:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1
a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

...
...

...
an,1x1 + an,2x2 + · · ·+ an,nxn = bn

(1)

where (x1, · · · , xn) are the unknowns. Given (ai,j)1≤i,j≤n, and bi, i = 1, · · · , n.
We can rewrite (1) in a matrix form by defining:

A :=


a1,1 a1,2 · · · · · · a1,n
a2,1 a2,2 · · · · · · a2,n

...
... · · · · · · ...

an,1 an,2 · · · · · · an,n

 , x :=


x1
x2
...
xn

 , b :=


b1
b2
...
bn


so we have that (1) becomes

A · x = b. (2)

Linear systems can be easily solved when A has a special structure, for
example when A is a diagonal matrix or triangular matrix and ai,i 6= 0 for
i = 1, . . . , n:

1

• A diagonal matrix

A =



a1,1 0 · · · · · · 0
0 a2,2 0 · · · 0
...

...
. . . · · · ...

...
...

.
...

0 0 · · · · · · an,n

⇒
a1,1x1 = b1

a2,2x2 = b2

...
...

...

an,nxn = bn

x1 = b1
a1,1

x2 = b2
a2,2

...
...

...

xn = bn
an,n

• A triangular matrix

A =



a1,1 a1,2 · · · · · · a1,n
0 a2,2 a2,3 · · · a2,n
...

.
...

0
. . . 0 an−1,n−1 an−1,n

0 0 · · · 0 an,n

⇒

a1,1x1 + a1,2x2 + · · ·+ · · ·+ a1,nxn = b1

a2,2x2 + · · ·+ · · ·+ a2,nxn = b2

· · · ...
...

an−1,n−1xn−1 + an−1,nxn = bn−1

an,nxn = bn

⇒

x1 =
b1−
∑n

j=2
a1,jxj

a1,1

x2 =
b2−
∑n

j=3
a2,jxj

a2,2

...
...

...

xn−1 = bn−1−an−1,nxn
an−1,n−1

xn = bn
an,n

(3)

2

The formula (3) is called back substitution algorithm. For general mau-
rices other techniques based on matrix factorizations are in general used. If
the matrix is of large size and sparse (i.e. it has a relatively small number
of elements different from zero), then it is more convenient to use iterative
techniques. We will describe here briefly both approaches. In the next sec-
tion we consider the stability of linear systems, that is the sensitivity of the
output with respect to perturbations in the input data.

2 Stability of linear systems

2.1 Preliminaries

A vector norm is a function ‖ · ‖ : Rn → R satisfying three axioms:

1. ‖u‖ ≥ 0 for all u ∈ Rn and ‖u‖ = 0 if and only if u = 0.

2. ‖λu‖ = |λ|‖u‖for all vectors u ∈ Rn and scalars λ ∈ R.

3. ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u ∈ Rn and v ∈ Rn.

If u is a vector with n components, examples of norms are:

• ‖u‖1 := |u1|+ . . .+ |un|, norm-1;

• ‖u‖∞ := max1≤i≤n |ui|, max-norm;

• ‖u‖2 := (|u1|2 + . . .+ |un|2)
1
2 =

(
uTu

) 1
2 , norm-2.

We will also make use of matrix-norms. Matrix norms satisfy an extra
axiom compared to vector norms; this axiom has to do with the product of
matrices, so if A and B are n× n matrices, for a vector- norm according to
this axiom we have that

‖AB‖ ≤ ‖A‖‖B‖.

Assume U is a matrix with elements ui,j, examples of matrix-norms are:

• ‖U‖F =
√∑n

i=1

∑n
j=1 u

2
i,j, Frobenius norm;

• ‖U‖∞ := maxi
∑n
j=1 |ui,j| max-norm;

• ‖U‖1 := maxj
∑n
i=1 |ui,j| norm-1.

3

For example for

U :=

[
3 2
−1 0

]
,

we get

‖U‖F =
√

32 + 22 + (−1)2 =
√

14 = 3.74165738677394,

‖U‖∞ = max{|3|+ |2|, | − 1|+ |0|} = 5,

‖U‖1 = max{|3|+ | − 1|, |2|+ |0|} = 4.

2.2 Stability analysis

Consider Ax = b, A invertible. Let x(ε) be the solution of the linear system

(A+ εF)x(ε) = (b+ εf).

We are intersted in the case when ε tends to zero. Here f ∈ Rn and F is
n× n matrix.

We seek for bounds for the relative error

‖x− x(ε)‖
‖x‖

,

for a chosen vector norm ‖ · ‖. We will also make use of the so called sub-
ordinate matrix norm deduced from ‖ · ‖, that is for a given n × n matrix
B:

‖B‖ := max
x 6=0, x∈Rn

‖Bx‖
‖x‖

.

Proposition 2.1 Assume A is invertible. For all ε such that ε ≤ Cε then
A+ εF is also invertible.

Proposition 2.2 For all ε such that ε ≤ C̃ε thent here exists a unique x(ε)
and its components, xi(ε) are continuous functions of ε.

Lemma 2.3
d

dε
x(ε)

∣∣∣∣∣
ε=0

= A−1(f − Fx).

4

Proof. By differentiation.

We now use Taylor theorem and obtain

x(ε) = x(0) + εx′(0) +O(ε2),

where x(0) = x. So

‖x(ε)− x‖ ≤ ε‖x′(0)‖+O(ε2),

and using the lemma we obtain

‖x(ε)− x‖ ≤ ε‖A−1(f − Fx)‖+O(ε2).

This leads to

‖x(ε)− x‖
‖x‖

≤ ε
‖A−1(f − Fx)‖

‖x‖
+O(ε2) ≤ ε‖A−1‖

(
‖f‖
‖x‖

+
‖Fx‖
‖x‖

)
+O(ε2).

Now Ax = b implies ‖b‖ ≤ ‖A‖‖x‖, and this is equivalent to

1

‖x‖
≤ ‖A‖
‖b‖

.

We also have
‖Fx‖
‖x‖

≤ ‖F‖ =
‖F‖‖A‖
‖A‖

.

So proceeding in the estimation of the relative error we get

‖x(ε)− x‖
‖x‖

≤ ε‖A−1‖
(
‖f‖‖A‖
‖b‖

+
‖F‖‖A‖
‖A‖

)
+O(ε2),

and we obtain

‖x(ε)− x‖
‖x‖

≤ ε‖A−1‖‖A‖
(
‖f‖
‖b‖

+
‖F‖
‖b‖

)
+O(ε2).

The real number
K(A) := ‖A−1‖ ‖A‖

5

is called condition number of A. The condition number depends on A and
on the matrix-norm used to measure the relative error. The final bound of
the relative error is then

‖x(ε)− x‖
‖x‖

≤ εK(A)

(
‖f‖
‖b‖

+
‖F‖
‖b‖

)
+O(ε2),

and we clearly see that the condition number gives a bound of the relative
error in the output data by means of the relative error in the input data.

We observe that since I = A−1A, then

‖I‖ ≤ ‖A−1‖ ‖A‖ = K(A),

and for all subordinate matrix-norms

‖I‖ = max
x6=0, x∈Rn

‖I x‖
‖x‖

= 1,

so
1 ≤ K(A).

3 Gaussian elimination

Definition. Two linear systems of equations are said to be equivalent if they
have the same solution.

Gaussian elimination is an algorithm where in n − 1 steps, Ax = b is
transformed in an equivalent system Ux = f and U is an upper triangular
matrix. The advantage is that triangular systems can be easily solved using
the formula (3).

In particular we have

Ax = b→ A(1)x = b(1) → · · · → A(k)x = b(k) → · · · → A(n−1)x = b(n−1)

all intermediate linear systems A(k)x = b(k) k = 1, . . . , n−1 are equivalent to
Ax = b. The last system A(n−1)x = b(n−1), is in upper triangular form, and

6

system number k is

A(k) =



ã1,1 · · · ã1,k ã1,k+1 · · · ã1,n

0
. . .

...
... · · · ...

...
. . . ãk,k ãk,k+1 · · · ãk,n

...
... 0 ãk+1,k+1 · · · ãk+1,n

...
...

...
...

...
...

0 · · · 0 ãn,k+1 · · · ãn,n


.

We obtain A(1)x = b(1) from Ax = b by replacing the den 2nd, 3rd, ..,
nth equation in Ax = b with corresponding linear combinations of the first
equation with the 2nd, 3rd, .., nth equation. To obtain A(2)x = b(2) (and
the subsequent linear systems) the same process is repeated considering only
prosessen er repetert med å ta hensyn til kolonnene fra the columns form the
2nd to the nth and the rows from the 2nd to the nth.

3.1 Example

Given:

x1 + 4x2 + x3 = 6
2x1 − x2 − 2x3 = 3
x1 + 3x2 + 2x3 = 5

A =

 1 4 1
2 −1 −2
1 3 2


 x1
x2
x3

 =

 6
3
5

 (4)

we want to reduce it t a triangular form.
We start with replacing the second equation with a linear combination of

the first two equations, that is we replace
2x1 − x2 − 2x3 = 3 with

(2x1− x2− 2x3) + (−2) · (x1 + 4x2 + x3) = 3 + (−2) · 6,⇒ −9x2− 4x3 = −9.

We then replace the 3rd equation with a linear combination of the 3rd and
1st equation:

(x1 + 3x2 + 2x3) + (−1) · (x1 + 4x2 − x3) = 5 + (−1) · 6,⇒ −x2 + x3 = −1.

This way we get the following new system

x1 + 4x2 + x3 = 6
−9x2 − 4x3 = −9
−x2 + x3 = −1

A(1) =

 1 4 1
0 −9 −4
0 −1 1


 x1
x2
x3

 =

 6
−9
−1

 (5)

7

The coefficients used in the linear combination of the equations are

[
2
1

]
,

and they are chosen so that in the new system we get that the second and
third element of the first column vanish, this way we eliminate to coefficients
in the linear system.

Now we work only with the two last equations:

−9x2 − 4x3 = −9
−x2 + x3 = −1

(6)

We replace the last equaltion with

(−x2 + x3) + (−1

9
) · (−9x2 − 4x3) = −1 +

(
−1

9

)
· (−9)⇒ 13

9
x3 = 0.

The coefficient used for the linear combination is 1
9
.

In the end we get the linear system

x1 + 4x2 + x3 = 6
−9x2 − 4x3 = −9

13
9
x3 = 0

A(2) =

 1 4 1
0 −9 −4
0 0 13

9


 x1
x2
x3

 =

 6
−9
0

 (7)

and the solution can be computed by the backward substitution algorithm.
Starting form the last equation x3 = 0, and proceeding upwards to solve
−9x2 = −9⇒ x2 = 1 og x1 + 4 = 6⇒ x1 = 2, we get

x =

 2
1
0

 .
Note now that when we eliminated the first column we used the two

coefficients: [
2
1

]
,

and for the second we used
1

9
.

By using these coefficients we construct a triangular matrix L:

L :=

 1 0 0
2 1 0
1 1

9
1

 .
8

Note also that if from (7) we define now U := A(2) and we compute L · U ,
we get A back.

In general when we perform the Gaussian elimination, we compute si-
multaneously a factorization of the matrix A = LU , where L and U are two
triangular matrices.

This is very handy if we want to compute solution of two or more systems
with the same coefficient matrix A but different right hand sides, b, b̂ and so
on. In this case one can use the same factorization LU = A two (or more)
times ganger and compute to different backward substitutions, one with b
and one with b̂.

Such factorization is also used for computing the determinant of A, be-
cause det(A) =

∏n
i=1 ui,i. Analogously one can use the factorization to find

the inverse A−1. In our case we have

det(A) = 1 · (−9) · 13

9
= −13

and

A−1 =

 1 4 1
0 −9 −4
0 0 13

9


−1  1 0 0

2 1 0
1 1

9
1


−1

=

 1 4
9

7
13

0 −1
9
− 4

13

0 0 9
13


 1 0 0
−2 1 0
−7

9
−1

9
1


Note that it is much easier to compute the inverse of a triangular matrix
than the inverse of a general invertible but unstructured matrix.

3.2 Gauss elimination: general algorithm

For the general matrix (1) we have:

Ax = b→ A(1)x = b(1)

if a1,1 6= 0

9

l2,1 := a2,1
a1,1

a
(1)
2,p := a2,p − l2,1a1,p b

(1)
2 := b2 − l2,1b1

l3,1 := a3,1
a1,1

a
(1)
3,p := a3,p − l3,1a1,p b

(1)
3 := b3 − l3,1b1

...

ln,1 := an,1

a1,1
a(1)n,p := an,p − ln,1a1,p b(1)n := bn − ln,1b1



p = 2, . . . , n.

Now we define
A := A(1), b := b(1)

and continue with
Ax = b→ A(2)x = b(2).

If a2,2 6= 0, we obtain, for j = 3, . . . , n,

lj,2 := aj,2
a2,2

a
(2)
j,p := aj,p − lj,2a2,p b

(2)
j := bj − lj,2b2 p = 3, . . . , n,

and then we define
A := A(2), b := b(2).

In general for A(k) we have,

A := A(k−1), b := b(k−1)

and
Ax = b→ A(k)x = b(k)

with

lj,k :=
aj,k
ak,k

a
(k)
j,p := aj,p − lj,kak,p b

(k)
j := bj − lj,kbk p = k + 1, . . . , n.

for j = k+1, . . . n, and assuming ak,k 6= 0. In the end we obtain the following
algorithm:

10

Gaussian elimination

For k = 1, . . . , n− 1

For j = k + 1, . . . , n

lj,k :=
aj,k
ak,k

For p = k + 1, . . . , n+ 1,

aj,p := aj,p − lj,kak,p

End

End

End

And with U := A(n−1) we also obtain the following, so called LU-factorization
for A,

A = LU.

3.3 Gaussian elimination with partial pivoting

In Gaussisan elimination (G-E), as described on the general algorithm, we
divide always by ak,k (the so called pivot element). Obviously we might get
problems when such value is zero or very small. To avoid such problems we
can perform systematic permutationns of the rows of the linear system. This
procedure is called partial pivoting.

3.4 Two exmples: Gaussian elimination with partial
pivoting

Consider the linear system

x1 + x2 + x3 + x4 = 1
x1 + x2 + 2x3 − x4 = 1
x1 + 2x2 − x3 − x4 = 1
x1 − x2 + x3 − x4 = 1


1 1 1 1
1 1 2 −1
1 2 −1 −1
1 −1 1 −1

 (8)

11

We eliminate the first column by subtracting the first row from the other
three. We obtain

x1 + x2 + x3 + x4 = 1
x3 − 2x4 = 0

x2 − 2x3 − 2x4 = 0
−2x2 − 2x4 = 0


1 1 1 1
0 0 1 −2
0 1 −2 −2
0 −2 0 −2

 (9)

now we can not proceede, because there is no α which could be used to
eliminate x2

(x2 − 2x3 − 2x4)− α · (x3 − 2x4) = 0.

The only option is to permute the rows. To minimize roundoff error propa-
gation it pays off to exchange the second row with the row having the biggest
coefficient in absolute value for x2, that is the third. Then we get

x1 + x2 + x3 + x4 = 1
−2x2 − 2x4 = 0

x2 − 2x3 − 2x4 = 0
x3 − 2x4 = 0


1 1 1 1
0 −2 0 −2
0 1 −2 −2
0 0 1 −2

 (10)

and now we continue the Gaussian elimination as usual. We obtain:

x1 + x2 + x3 + x4 = 1
−2x2 − 2x4 = 0
−2x3 − 3x4 = 0
x3 − 2x4 = 0


1 1 1 1
0 −2 0 −2
0 0 −2 −3
0 0 1 −2

 (11)

and in the end:

x1 + x2 + x3 + x4 = 1
−2x2 − 2x4 = 0
−2x3 − 3x4 = 0
−7

2
x4 = 0


1 1 1 1
0 −2 0 −2
0 0 −2 −3
0 0 0 −7

2

 (12)

which, by the backward substitution algorithm, gives the following solution

x =


1
0
0
0

 .

12

In the second example given:

x1 + 3x2 + 2x3 = 5
2x1 − x2 − 2x3 = 3
x1 + 4x2 + x3 = 6

A =

 1 3 2
2 −1 −2
1 4 1


 x1
x2
x3

 =

 5
3
6

 (13)

we want to reduce the system to triangular form using Gaussian elimination
with partial pivoting.

We exchange rows:

2x1 − x2 − 2x3 = 3
x1 + 3x2 + 2x3 = 5
x1 + 4x2 + x3 = 6

(14)

then we eliminate x1,

2x1 − x2 − 2x3 = 3
3.5x2 + 3x3 = 3.5
4.5x2 + 2x3 = 4.5

(15)

we exchange rows once more:

2x1 − x2 − 2x3 = 3
4.5x2 + 2x3 = 4.5
3.5x2 + 3x3 = 3.5

(16)

and eliminate x2 from the last equation,

2x1 − x2 − 2x3 = 3
4.5x2 + 2x3 = 4.5
1.4444x3 = 0

(17)

with the backward substitution algorithm we obtain the solution x3 = 0,
x2 = 1, x1 = 2.

3.5 G-E with partial pivoting: general algorithm

In general we get the following Gaussian elimination algorithm with partial
pivoting: first one initializes the vector π (pivot vektor) so that πi := i for
i = 1, . . . n,

13

Gaussian elimination with partial pivoting

For k = 1, . . . , n− 1

a := |ak,k|

For j = k + 1, . . . , n

if (a < |aj,k|)

a := |aj,k|

πk := j

End

End

if (πk 6= k)

s := πk

For p = k, . . . , n

r := ak,p

ak,p := as,p

as,p := r

End

End

For j = k + 1, . . . , n

lj,k :=
aj,k
ak,k

For p = k + 1, . . . , n+ 1,

aj,p := aj,p − lj,kak,p

End

End

End

14

3.6 Complexity of Gaussian elimination

One can prove that for a n×n matrix the complexity of Gaussian elimination
is of

1

3
n3 − 1

3
n,

operations (additions and multiplications). For big n 1
3
n3 dominates the cost.

We say that Gaussian elimination has complexity O(n3). The backward
substitution algorithm, (3)) has lower cost, that is O(n2).

4 Other matrix factorizations

Bisides the LU -factorizations there are many other important matrix factor-
izations which is useful to know about.

Recall that an eigenvalue of A is a real or complex value such that, there
is u vector such that

Au = λu.

u is called eigenvector of A.

1. QR- factorization: any real matrix A n× p can be factorized in the
form

A = QR

where Q is n × n orthogonal (i.e. QTQ = QQT = I where I is the
identity matrix) and R is n× p is upper triangular.

2. Polar decomposition: any matrix A n × n can be factorized in the
form

A = QS

where Q is n× n orthogonal and S is n× n is symmetric.

3. Schur canonical form: for any matrix A n× n there exists a matrix
P (complex) unitary (i.e. PHP = PPH = I and PH the transpose-
conjugate of P) such that

PHAP = T

15

where T is upper triangular.

As a consequence, if A is Hermitian (i.e. A = AH) then

PHAP = PHAHP = T

and T is Hermitian and triangular and therefore is diagonal.

4. Singular value decomposition. For all A n×n real matrices, A can
be factorized as

A = UΣV T

where Σ is diagonal, U and V are n × n orthogonal matrices. The
diagonal elements of Σ are the singular values of A, i.e. the square
roots of the eigenvalues of ATA. This factorization has analogs for
n× p matrices and for matrices with complex entries.

5. Jordan canonical form. For any A real n×n (or A ∈ Cn×n) it exists
a matrix M ∈ Cn×n invertible, such that

M−1AM = J =


J1

J2
. . .

Jk

 , (block-diagonal). (18)

Here Ji is a mi ×mi-matrix, and
∑k
i=1mi = n. The Jordan-blocks Ji

have the form

Ji =


λi 1

λi
. . .
. . . 1

λi

 , if mi ≥ 2

and Ji = [λi] if mi = 1. If all mi = 1, then k = n and the matrix is
diagonalizable. If A has n distinct egenvalues, it is always diagonaliz-
able. The converse is not true, that is a matrix can be diagonalizable
even if it has multiple eigenvalues.

16

5 Symmetric matrices

When we talk about symmetric matrices, we mean normally real symmetric
matrices. The transpose AT of a m × n-matrix A, is a n × m-matrix with
aji as the (ij)-element (a matrix whose columns are the rows of A). A n× n
matrix is symmetric if AT = A.

A symmetric n × n matrix has real eigenvalues λ1, . . . , λn and a set of
real orthonormal eigenvectors x1, . . . , xn. Let 〈·, ·〉 denote the standard inner-
product on Cn, then 〈xi, xj〉 = δij (Kronecker-delta).

A consequence of this is that the matrix of eigenvectors X = [x1, . . . , xn]
is real and orthogonal and its inverse is therefore the transpose

X−1 = XT .

The diagonalization of A is given by

Λ = diag(λ1, . . . , λn), X = [x1, . . . , xn], XTX = I, XTAX = Λ⇔ A = XΛXT

5.1 Positive definite matrices

If A is symmetric and 〈x,Ax〉 = xTAx > 0 for all 0 6= x ∈ Rn A is called
positive definite. Here we denote with 〈·, ·〉 the Euclidean inner product.

A (symmetric) is positive semi-definite if 〈x,Ax〉 ≥ 0 for all x ∈ Rn and
〈x,Ax〉 = 0 for at least a x 6= 0.

A positive definite ⇔ A has only positive eigenvalues.

A positive semi-definite⇔ A has only non-negative eigenvalues, and at least
a 0-eigenvalue.

6 Gershgorin’s theorem

Gershgorin’s theorem. Is given A = (aik) ∈ Cn×n. Define n disks Sj in
the complex plane by

Sj =

z ∈ C : |z − ajj| ≤
∑
k 6=j
|ajk|

 .

17

The union S =
n⋃
j=1

Sj contains all the eigenvalues of A. For every eigenvalue

λ of A there is a j such that λ ∈ Sj.
Example.

A =

 1 + i 1 0
0.5 3 1
1 1 5

 .

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

Re z

Im
 z

Proof of Gershgorin’s theorem: Let λ be a eigenvalue with associate eigen-
vector x = [ξ1, . . . , ξn]T 6= 0. Choose ` among the indexes 1, . . . , n such
that |ξ`| ≥ |ξk|, k = 1, . . . , n, and so |ξ`| > 0. The equation Ax = λx has
component `:

n∑
k=1

a`kξk = λ ξ` ⇒ (λ− a``)ξ` =
∑
k 6=`

a`kξk

18

Divide by |ξ`| on each side and take the absolute value

|λ− a``| =

∣∣∣∣∣∣
∑
k 6=`

a`k
ξk
ξ`

∣∣∣∣∣∣ ≤
∑
k 6=`
|a`k|
|ξk|
|ξ`|

≤
∑
k 6=`
|a`k|

Then we get λ ∈ S`.

Example. Diagonally dominant matrices with positive diagonal elements
are positive definite. Why?

7 Solution of linear systems by iteration

To approximate x in the numerical solution of Ax = b, given x(0), we con-
struct a sequence of vectors x(1), . . . , x(n), A way to do this is by fixed-
point iteration.

We consider an equivalent formulation of Ax = b as fix-point equaltion.
For example:

Ax = b⇔ x = (I − A)x+ b

where I is the n×n identity matrix. Given x0, we then obtain the iteration:

x(n+1) = (I − A)x(n) + b.

In general one can obtain an iteration as follows:

• write A as a sum of two terms: A = M −N , choose M invertible;

• from (M −N)x = b one gets Mx = Nx+ b and

x = M−1Nx+M−1b;

• so given x0 one builds the iteration:

x(n+1) = M−1Nx(n) +M−1b.

Typically M is chosen such that M−1 is easy to compute, for example M
can be diagonal or triangular.

19

7.1 Example

We want to solve with fix-point-iteration the system

x1 − x2 = 1
−x1 + 2x2 = −1

A :=

[
1 −1
−1 2

]
,

[
1
−1

]
, (19)

and start with

x(0) =

[
0
0

]
.

The solution is

x =

[
1
0

]
.

We take

M :=

[
1 0
0 2

]
N = M − A =

[
0 1
1 0

]
.

We have Mx = Nx+ b, and x = M−1Nx+M−1b, i.e.[
x1
x2

]
=

[
1 0
0 2

]−1 [
0 1
1 0

] [
x1
x2

]
+

[
1 0
0 2

]−1 [
1
−1

]
.

By using x(0) we compute

x(1) = M−1Nx(0) +M−1b,[
x
(1)
1

x
(1)
2

]
=

[
1 0
0 2

]−1 [
1
−1

]
=

[
1
−1

2

]
.

We continue x(2) = M−1Nx(1) +M−1b:[
x
(2)
1

x
(2)
2

]
=

[
1 0
0 2

]−1 [
0 1
1 0

] [
x
(1)
1

x
(1)
2

]
+

[
1
−1

2

]
=

[
1
2

0

]

and more[
x
(3)
1

x
(3)
2

]
=

[
1

−0.2500

]
,

[
x
(4)
1

x
(4)
2

]
=

[
0.7500

0

]
,

[
x
(5)
1

x
(5)
2

]
=

[
1

−0.1250

]
,

[
x
(6)
1

x
(6)
2

]
=

[
0.8750

0

]
,

[
x
(28)
1

x
(28)
2

]
=

[
1.0000
−0.0000

]
.

20

7.2 Example

In the system (19) we take

M :=

[
1 0
−1 2

]
N = M − A =

[
0 1
0 0

]
,

and with the same x(0) we compute x(1) = M−1Nx(0) +M−1b:[
x
(1)
1

x
(1)
2

]
=

[
1 0
−1 2

]−1 [
1
−1

]
=

[
1
0

]
,

and we get the true solution of the system already at the first iteration.

In general if M is the diagonal part of A, i.e.

mi,i = ai,i, i = 1, . . . , n, mi,j = 0, i 6= j,

(where mi,j are the elements of M , and ai,j are the elements of A), then we
obtain the so called Jacobi method.

If M is the lower triangular part of A, i.e.

mi,j = ai,j, i = 1, . . . , n, j = 1, . . . , i, mi,j = 0, i = 1, . . . , n, j = i+1, . . . , n,

then the method is called Gauss-Seidel method.

7.3 Convergence

To measure the extent to which xn has converged to x we use vector norms:
‖x− x(n)‖.

We write the iteration in the following general way

x(n+1) = M−1Nx(n) +M−1b,

by defining C := M−1N and g := M−1b we can write:

x(n+1) = Cx(n) + g. (20)

Theorem 7.1 If there is a matrix-norm ‖·‖ such that ‖C‖ < 1 the iteration
(20) converges for all x(0).

21

7.4 Example

Consider

B =

[
3 1
−1 2.5

]
,M =

[
3 0
0 2.5

]
, N =

[
0 −1
1 0

]

then

CJ = M−1N =

[
0 −0.3333

0.4000 0

]
and ‖CJ‖F = 0.5207, ‖CJ‖1 = ‖CJ‖max = 0.4000, so given f , the Jacobi
method converges for Bx = f for any x(0).

For the Gauss-Seidel method we have

CGS =

[
3 0
−1 2.5

]−1 [
0 −1
0 0

]
=

[
0 −0.3333
0 −0.1333

]

and ‖CGS‖F = 0.3590, ‖CGS‖1 = 0.4667 and ‖CGS‖max = 0.3333, so Gauss-
Seidel method converges for Bx = f and for any x(0).

7.5 Example

Consider the matrix from the example (19):

A :=

[
1 −1
−1 2

]
,

Both Jacobi and Gauss-Seidel converge. For the Jacobi method we have:

CJ =

[
1 0
0 2

]−1 [
0 1
1 0

]
=

[
0 1
1
2

0

]

with norms ‖CJ‖F ≥ 1 ‖CJ‖max ≥ 1 ‖CJ‖1 ≥ 1. For Gauss-Seidel

CGS =

[
1 0
−1 2

]−1 [
0 1
0 0

]
=

[
0 1
0 1

2

]

and ‖CGS‖F ≥ 1 ‖CGS‖max ≥ 1 ‖CGS‖1 ≥ 1.
Here the hypothesis of the previous theorem are not satisfied, even if in

our numerical experiments the iteration converges. We should use another

22

technique to prove convergence. Let σ(C) be the set of eigenvalues of C,
then we can define

ρ(C) := max
λ∈σ(C)

|λ|

ρ(C) is named spectral radius of C, and it is a positive number.
One can show that

Theorem 7.2 ρ(C) < 1 if and only if the iterative method (20) converges
for all x(0).

In our example we must look at the eigenvalues of CJ and CGS. Note
that

Cu = λu⇔ (C − λI)u = 0⇔ det(C − λI) = 0,

where I is the identity matrix and

det(U) = det

([
u1,1 u1,2
u2,1 u2,2

])
= u1,1 · u2,2 − u1,2 · u2,1.

So

det(CJ − λI) = det

([
0 1
1
2

0

]
−
[
λ 0
0 λ

])
= det

([
−λ 1
1
2
−λ

])
= λ2 − 1

2
,

and λJ1,2 = ±
√

1
2
≈ ±0.7071. So ρ(C) = 0.7071 and ρ(C) < 1.

For CGS we have

det(CJ − λI) = det

([
−λ 1
0 1

2
− λ

])
= λ

(
1

2
− λ

)
,

and λGS1 = 0 and λGS2 = 1
2

and ρ(CGS) = 1
2
.

The reason why Gauss-Seidel converges faster than Jacobi is that ρ(CGS) ≤
ρ(CJ).

8 Krylov subspace methods

Given x0 an initial guess for the solution x of the linear system Ax = b, A
n× n, consider the residual vector

r0 := b− Ax0.

23

The Krylov subspace generated by A and r0 is the subspace of Rn defined
by

Km(A, r0) := span{r0, Ar0, . . . Am−1r0}.
This subspace has dimension less than or equal to m.
A Krylov subspace method is as method where the m-th approxima-

tion is such that
xm = x0 + v, v ∈ Km(A, r0)

and the residual rm := b− Axm satisfies

rm ⊥ w, ∀w ∈ Lm,

where Lm is a subspace of Rn of dimension less than or equal to m.
Typical choices for Lm are:

Lm =

 K
m(A, r0)

AKm(A, r0)

The first choice leads to the so called Full Orthogonalization Method
(FOM). When A is symmetric and positive definite, this method is equivalent
to the famous Conjugate Gradient method (CG) . The second choice gives
rise to the so called Generalized Minimal Residual method (GMRES). For
more details on the implementation of these iterative techniques please refer
to numerical linear algebra courses.

9 Preconditioning

Given
Ax = b

we want to find M ≈ A and M easy to “invert”, such that

M−1Ax = M−1b

is “easier” to solve with an iterative method, i.e. the iterative methods
converge faster. This is typically achieved if the choice of M leads to

K(M−1A) ≤ K(A),

where K(A) denotes the condition number of A.
To get a satisfactory preconditioner we need:

24

• M ≈ A must be such that linear systems of the type

Mz = w

are easy to solve;

• M ≈ A must be a good approximation of A such that the product
M−1A is close to the identity matrix, this implies that K(M−1A) is
small compared to K(A).

If one sapiently constructs M following the above guidelines, the iteration
will converge significantly faster to the solution of the linear system. In the
implementation one should carefully handle the extra operations involved in
applying a Krylov subspace method to the preconditioned system instead of
to the original system, in order not to loose all the computational gain given
by using a preconditioner.

25

