teasoning

§ Theorem 1

n(x)

s of p(x)

wton’s Form

Numetccst Vathomalics ansl c@wv\g

poso, Cl ool Eolfnn
it e Q"”“”]) s

at each of the points xq, X1, . . ., x¢. (Its form is chosen for precisely this reason.) Now we
adjust the parameter ¢ so that the new polynomial takes the value yi; at x;41. Imposing
this condition, we obtain

Pxer1) + iy — x0) Xy — X1) -+ (kg1 — X)) = Yt

The proper value of ¢ can be obtained from this equation because none of the factors
Xpy1 — X;, for 0 £i £k, can be zero. Remember our original assumption that the x;’s are all
distinct.

This analysis is an example of inductive reasoning. We have shown that the process
can be started and that it can be continued. Hence, the following formal statement has been
partially justified:

Theorem on Existence of Polynomial Interpolation

If points xy, X1, - . . , X, are distinct, then for arbitrary real values yo, y1, ..., ¥, there
is a unique polynomial p of degree at most 2 such that p(x;) = y; forO<i <n.

Two parts of this formal statement must still be established. First, the degree of the poly-
nomial increases by at most 1 in each step of the inductive argument. At the beginning, the
degree was at most 0, so at the end, the degree is at most 7.

Second, we establish the uniqueness of the polynomial p. Suppose that another poly-
nomial g claims to accomplish what p does; that is, ¢ is also of degree at most n and satisfies
q(x;) = y; for 0 <i <n. Then the polynomial p — g is of degree at most n and takes the
value O at xg, x1, . .., x,. Recall, however, that a nonzero polynomial of degree n can have
at most n roots. We conclude that p = g, which establishes the uniqueness of p.

Interpolating Polynomial: Newton Form

In Example 2, we found the Lagrange form of the interpolating polynomial:

pa(x) = —36(x = %)(x —1- 16(x - %)(x D+ 14(x = %) (x - 3—1)

It can be simplified to
79 349

pg(X) —F-i—?/\ —38

Now, we learn that this polynomial can be written in another form called the nested Newton
form:

pa(x) =2+ (x - 3) [36 + (\' - %)(—38)]

It involves the fewest arithmetic operations and is recommended for evaluating p,(x).
It cannot be overemphasized that the Newton and Lagrange forms are just two different
derivations for precisely the same polynomial. The Newton form has the advantage of easy
extensibility to accommodate additional data points.

The preceding discussion provides a method for constructing an interpolating polyno-
mial. The method is known as the Newton algorithm, and the resulting polynomial is the
Newton form of the interpolating polynomial.

158 Chapter 4 Interpolation and Numerical Differentiation

EXAMPLE 3

Solution

Polynomials
pos Pis P2 P3» P4

Adding a New Term

EXAMPLE &

Solution

Nested Form palx)

Using the Newton algorithm, find the interpolating polynomial of least degree for this table:
x 0 1y -1 2 -2
y | -3 3| —15{39 -9

In the construction, five successive polynomials appear; these are labeled po, P1» P2, P3
and ps. The polynomial pois defined to be

po(x) = =3

The polynomial pi has the form
pr(x) = po(®) + clx —x0) =5+ e~ 0)

The interpolation condition placed on pi is that pi(1) = _13. Therefore, We have =5 +
c1—-0)= —3. Hence, ¢ = 2, and p1 is

pix)y=-3+F 2x
The polynomial p» has the form

paAx) = pi(x) + clx — xo)(x — x)=-—2+ 2x +exf(x — 1

The lnterpolation condition placed on ps is that p(—=1) = —15. Hence, W have =5 +
2= +e(-D(=1-D= ~15. This yields ¢ = =4, 0

pr(x) = _5 4 2x — 4x(x — 1)

The remaining Steps for p3(x) are similar. The final result is the Newton form of the
interpolating polynomial:

pa(x) = 54+ 2x — Ax(x — 1+ 8x(x — Dx + 1)+ 3x(x —)(x + Nx-2) B
Later, we develop 2 better algorithm for constructing the Newton interpolating poly-
nomial. Nevertheless, the method just explained is a systematic one and involves very Tittle
computation. An important feature to notice is that each new polynomial inthe algorithmis

obtained from its predecessor by adding a new term. Thus, at the end, the final polynomiﬂ
exhibits all the previous polynomials as constituents.

Nested Form

Before continuing, Jet's rewrite the Newton formof the interpolating polynomial for effici
evaluation.
Write the polynomial pa of Example 3 in nested form and use it to evaluate ps(3)-
We write pa as

pa(n) =5 +x(2+ 0~ D(-4+ @+ D8+ G- 2)3)))
Therefore, We obtain

ps(3) =3 +3(2+2(—-4+4(8 +3))
=241

Itiplication

‘rpolation

nomials

IGURE 4.2
~ Newton
lynomials

4.1 Polynomial Interpolation 159

Another solution, also in nested form, is

Pa) = =5+ x(4+x(=7 +x@2+3x)))
from which we obtain
Pa3)=—=5+3(4+3(-7+32+3.3))) =241

This form is obtained by expanding and systematic factoring of the original polynomial. It
is also known as a nested form, and its evaluation is by nested multiplication.]

To describe nested multiplication in a formal way (so that it can be translated into a
pseudocode), consider a general polynomial in the Newton form. It might be
Pu(x) = ag + a1 (x ~ x0) + a2(x — x0)(x — x;) + - --
+ @ = o) (x = x) - (x — x,)

The nested form of p,(x) is

Pn(x) = ao+ (x —x0) (a1 + (x ~x) (aa + - - + (x = %n-2) (@1 + (6 = x,1)(@,) -+)

The Newton interpolation polynomial can be written succinctly as

n i—1
Pax) =) g e -xp 3)
=0 j=

Here H;O(x — X;) is interpreted to be 1. Also, we can write it as

n

Pa(x) =" a; m(x)

i=0
where

i—1

m(x) =[] —x)) 4)

Jj=0

Figure 4.2 shows the first few Newton polynomials: 7o(x), my(x), m2(x), m3(x), m4(x),
and r5(x).

05 1 1 1 | 1 i L I i
-1 -0.8-06-04-02 0 02 04 06 08 1

X

Chapter 4 Interpolation and Numerical Differentiation

Juation of
erpolation
lynomial pseudocode

Unique Polynomial Pn

Adding One Term
at a Time

1n evaluating P (t)fora given aumerical value oft,we naturally start with the innermost
parentheses, forming successively the following quantities:
Vo = Gn
v, = volf —~ Xp—1) T =t

v, =il — Xp—2) T An-2

Uy = vn—-l(t - xO) + ao

The quantity v, is nowW p(t)- In the following pseudocode, a subscripted yariable is not
needed for vi. Instead, we can write

integer i, 1} real t, Vs real array (@i)oms (xi)om
v < Oy
fori=n— 1 to O step —1
v < vlt —x) T ai
end for

Here, the array (ai)on contains the 7 +1 coefficients of the Newton formof the interpolating
polynomial (3) of degree at most 1, and the array (x)on contains the 1 4+ 1 nodes Xi.

Calculating Coefficients i Using Divided pifferences

‘We turn now 10 the prob\em of determining the coefficients o, Gpy v Cn efficiently. Again
we start with 2 table of values of a function f:

fx) £(x1))
The points Xo Xise--aXn are assumed t0 be distinct, but no assumption is made about theil
positions on the real line.]
Previously, W€ established that for eachn = 0,1,...: there exists & unique polyno i
Pn such that

o The degree of paisat most 7.
o pulX) = f(xi) fori =01, ., h.

1t was shown that p, canbe expressed in the Newton form
pa(x) =00t ay(x — x0) + a2¥ Xy —x)
rag x0T Xu-1)

A crucial observation about P 18 that the coefficients ao, dt» - * donot depend on n- 1
words, P 1 obtained from Pn-i by adding one more term, without altering the coetlEs
already present in pn-t itself. This is because W€ began with the hop® that Pn C
expressed in the form

pa(x) = par(¥) t an(x —X0) (x = *n-1)

and discovered that it was indeed possible.

vided Difference
der k

, @2 Divided
‘ences

EXAMPLE 5

Solution

n Form of
olating
Jmial

4.1 Polynomial Interpolation 161

A way of systematically determining the unknown coefficients ap, ay, ..., a, is to set
x equal in turn to xg, X1, ..., x, in the Newton form (3) and to write down the resulting
equations:
f(x0) =ag
F(x1) =ap+ a;(x; — xp))
f(x2) = ag + ai(xa — x0) + ax(x3 — x0) (x — x,)
etc.
The compact form of Equations (5) is
k i-1
Fa) =Y a][—x) (©O<kzn) (6)

i=0 j=0
Equations (5) can be solved for the a;’s in turn, starting with ag. Then we see that ag depends
on f(xp), that a; depends on Sf(xo0) and f(x,), and so on. In general, a; depends on f (xy),

fxa), ..., f(x). Inother words, a, depends on the values of f at the nodes X0y X1y onny Xgo
The traditional notation is

ar = flxo, x1,..., x])]
This equation defines f[xy, x, ..., x]. The quantity f[xo, xy, ..., x;]is called the divided
difference of order k for f. Notice also that the coefficients ap, ay, ..., a; are uniquely

determined by System (6). Indeed, there is no possible choice for aq other than ap = f(xg).
Similarly, there is now no choice for a, other than [f (x;) —ap]/(x; — Xo) and so on. Using
Equations (5), we see that the first few divided differences can be written as

ap = f(xg)
o Fx1) —ap _ o) — Fxo)
X — X X1 — Xp
Fx) — fx) _JG) = fxo)
a_)=f(xz)—ao—al(x2—xo)= X3 — X, x| — Xp
) (x2 — x0)(x2 — x1) X2 — Xg
For the table:

x |1]-4] 0
f@ | 3] 13] 23

determine the quantities f[xg], Sflxo, x1], and f[xq, x1, x2].

We write out the system of Equations (5) for this concrete case:

3=aqp
13 =ap + a;(-5)
=23 =ap+ai(—1) + ay(—1)(4)
The solution is @y = 3, a; = —2, and a; = 7. Hence, for this function, f]

= 3,
SfI1,—4] = =2, and f[1, —4,0] = 7. =

With this new notation, the Newton form of the interpolating polynomial takes the
form

n i-1
P = 3 { Flro.xu,ooxl [J e - xp)} ®
i=0 j=0 2

erical Differentiation

Interpolation and Num

2 Chapter 4
with the usual convention that H};o(x —x) = 1. Notice that the coefficient of x" in pa is
n occurs only in ﬂ'};:}(x —xj). It follows that if fis

because the term X
e<n— 1, then fxos
n of how

(5) or Syst
ly solve Equation

xl,...,x,,]= .
to compute the required divided differences

em (6), it is evident that this computation canbe
(6) for a s follows:

f[xg,xl,...,x.t]
a polynomial of degre

We return tO the questio
.., x;). From System

f[x07 Xis -

performed recursively. We simp

k-1 k-1 i-1
f(xk)=akﬂ(xk—xj)+2a,-ﬂ(xk—xj) _
j=0 i=0 =0 R | !

and
=1 0=}

f - S L =X
=0 =0
ax = k-1
H(xk - Xj)
j=0
Using Equation (7), we have
k-1 i—1
f&x) — S flxo X ,x,-iﬂ(xk - xj)
flxo, Xro oo)= =L past =)
1T =)
i |
m Algorithm Computing the pivided Differences of f \
. Set flxol = f (x0)-
Lx)by Equation).

e Fork = 2han .,n,compute flxo, Xty
EXAMPLE 6 Using Algorithm (10), write out the divided differences formulas for f1xols flxo, X
f[x()’xhxl]’ and f[x()vx\sxlaxS . s

flxol = f(x0)

Solution
(x1) — flxol
flxo, 01} = f/l—jf’/o
First Four Divided Xy T X0
Differences flxo ¥ o] = f(x2) — Flxo) — flxo: x1}(x2 — X0
0 («\‘z"xo)(xz—-\'i) ‘
e fx3) — Flxol — flxo: xi](xs — X0) ~ flxo. X1: x2)(x3 x0) (X3
fx0, X1. X20 x3) =
(x3 — X0) (X3~ x) (s~ x2)
Algorithm (10) is easily programmed and is capable of computing the di"“j ;
ferences flxols Flxos Xl f[xo,x‘,...,x,,] at the cost of l2n(3n + 1). Ll
Operation Count (n— D0~ 2) multiplications, and n divisions excluding arithmetic operati®™s k ;
indices. Now 2 more refined method is presented for which the pseudocod_e 8
d costs only In(n+ 1) divisions and n(n + Y additions

three statements (M) an

W Theorem 2

'sive Property

Proof

B Theorem 3

1ce Property

4.1 Polynomial Interpolation 163

At the heart of the new method is the following remarkable theorem:

Recursive Property of Divided Differences

The divided differences obey the formula

i T R Sl xa, o) = flxe, x1, . 3] an

Xy — Xp

Since f[xo, x1, ..., x;] was defined to be equal to the coefficient a in the Newton form
of the interpolating polynomial p, of Equation (3), we can say that Slxo, x1, ..., x;] is the
coefficient of x* in the polynomial p; of degree < k, which interpolates f at x,, Xlyeony Xko
Similarly, f[x, xa, ..., x;] is the coefficient of x*~! in the polynomial g of degree <k — 1,
which interpolates fatx,x, ..., x. Likewise, f[xo, xy,... » Xt—1] is the coefficient of
x*~in the polynomial Pi-y of degree <k — 1, which interpolates Sfatxg,xq,...,x,_,. The
three polynomials py, g, and Pr~ are intimately related. In fact,

X

pe(x) = g(x) + 2[q(x> — pi1(x)] (12)

x —
X — X
To establish Equation (12), observe that the right side is a polynomial of degree at most k.
Evaluating it at x;, for 1 </ <k — 1, results in f(x;):

X

q(x) +

1 Xk
() = peos ()] = fx0) +
X — Xg
= f(x)
Similarly, evaluating it at x, and Xy gives f(xg) and f(x;), respectively. By the uniqueness of

interpolating polynomials, the right side of Equation (12) must be pi(x}, and Equation (12)
is established.

Completing the argument to Justify Equation (11), we take the coefficient of x* on both

S FO) — £
X0

Xi
X —

sides of Equation (12). The result is Equation (11). Indeed, we see that Slxr, xa, 000, x] s
the coefficient of x*~' in ¢, and f[x,, X1y ..oy Xp1] s the coefficient of x*~'in p,_,. m
Notice that f[xg, xy, ..., X:] is not changed if the nodes Xo, X, ..., x; are permuted.

Thus, for example, we have

Slxo, x1, 23] = flxy, x2, x0)

The reason is that f[xg, x;, x3]is the coefficient of x? in the quadratic polynomial interpolat-
ing f atxg, xy, x5, whereas Jlx1, x2, xo] is the coefficient of x2 in the quadratic polynomial
interpolating f at X1, X3, Xp. These two polynomials are, of course, the same! A formal
statement in mathematical language is as follows:

Invariance Theorem

The divided difference Sflxo, x, ..., x,] is invariant under all permutations of the
arguments xg, xy, ..., x;.

164 Chapter 4 Interpolation and Numerical Differentiation

Since the variables xg, X1, - . . , X; and k are arbitrary, the recursive Formula (11) can
also be written as
Flxiar, Xiz2y -0 %) = flxi, Xiga, o0 xj1]

Flxa Xigrs oo X1 %) = Xj— %)

The first three divided differences are thus

flxil= fxi)
flxig] = flxi]
First Three Divided flx xip] = Xi1 — X;
Differences
[xi+1, Xig2) — fxi, Xi
Pl xian, Xisa] = Flxis1, Xipal = fIxi, Xiga]
Xiv2 — Xi
Using Formula (13), we can construct a divided-difference table for a function f.Itis
customary to arrange it as follows (here n = 3):
x| fll] fl,] floa
xo | [fIxo) -
.. . [£ x0. 1]
Divided-Difference Table ol fio | oo, xzﬂ
flxi, x2] fx0, X1, X2, x3]
x3 | flxa] flxi, x2, x3]
flxz, x3]
x3 | flxsl

In the table, the coefficients along the top diagonal are the ones needed to form the Newton
form of the interpolating polynomial (3).

EXAMPLE 7 Construct a divided-difference diagram for the function f given in the following table, and
write out the Newton form of the interpolating polynomial.

x |1|%|0|2
fol3lels]|

|

Solution The first entry is

v

-3
f[xo,xl]= ((3_ 1)) = %

After completion of column 3, the first entry in column 4 is

il

i
f[x()!xl’x?.] = 6
X2 — Xp 00—

The complete diagram is

x| fIY LY fLL LT L]
1
Sample Divided- it !
Difference Table %]
0 3 -3
_2
3
5
2] 3

4.1 Polynomial Interpolation 165
Thus, we obtain
P =3436 - D+ -D(x=-3) - 20— D(x - I]
Algorithms and Pseudocode
Turning next to algorithms, we suppose that a table for fisgivenat points xg, x, ..., x, and
that all the divided differences a; = flx, xieq, ..., x ;] are to be computed. The following [0
pseudocode accomplishes this:
integel‘ i, j,n; real array (aij)O:nxO:l!s (xi)o:n
fori=0ton
Qi < f(x;) |
end for
fferences ;
s forj =1ton .
fori =0ton—j i
Gij = (Gig1, jo1 — ai jo) [igy — x7)
end for
end for
Observe that the coefficients of the interpolating polynomial (3) are stored in the first row
of the array (aij)O:nxO.n-
If the divided differences are being computed for use only in constructing the Newton
form of the interpolation polynomial
" i—1
pu(x) = Zaf H(x — %))
i=0 j=0
wherea; = flxg, x|,..., x;], there is no need to store all of them. Only f[xol, flxo, x1], .. .,
SFlxo, x1, ..., x,] need to be stored.
When a one-dimensional array (a;)o., is used, the divided differences can be overwritten
each time from the last storage location backward so that, finally, only the desired coefficients
remain. In this case, the amount of computing is the same as in the preceding case, but the
storage requirements are less. (Why?) Here is a pseudocode to do this:
integer i, j,n; real array (a;)o.., (x;)ou,
fori =0ton
a; < f(x;)
end for
seudocode for j = 1ton

fori = n to j step —1
a4 < (@ — a;i-1)/(x; — x;_;)
end for
end for

This algorithm is more intricate, and the reader is invited to verify it—say, in the case n = 3.

For the numerical experiments suggested in the computer problems, the following two
procedures should be satisfactory. The first is called Coef. 1t requires as input the number
n and tabular values in the arrays (x;) and (y;). Remember that the number of points in

