
Solution of systems of nonlinear equations

Given a system of nonlinear equations

f(x) = 0, f : Rm → Rm (1)

for which we assume that there is (at least) one solution xi. The idea is to rewrite this system
into the form

x = g(x), g : Rm → Rm. (2)

The solution ξ of (1) should satisfy ξ = g(ξ), and is thus called a fixed point of g. The
iteration schemes becomes: given an initial guess x(0), the fixed point iterations becomes

x(k+1) = g(x(k)), k = 1, 2, . . . . (3)

The following questions arise:
(i) How to find a suitable function g?
(ii) Under what conditions will the sequence x(k) converge to the fixed point ξ?
(iii) How quickly will the sequence x(k) converge?
Point (ii) can be answered by Banach fixed point theorem:

Theorem 0.1. Let D ⊆ Rm be a convex1 and closed set. If

g(D) ⊆ D (4a)

and

‖g(y)− g(v)‖ ≤ L‖y − v‖, with L < 1 for all y,v ∈ D, (4b)

then G has a unique fixed point in D and the fixed point iterations (3) converges for all
x(0) ∈ D. Further,

‖x(k) − ξ‖ ≤ Lk

1− L
‖x(1) − x(0)‖. (4c)

Proof. The proof is based on the Cauchy Convergence theorem, saying that a sequence {x(k)}∞k=0

converges to some ξ if and only if for every ε > 0 there is an N such that

‖x(l) − x(k)‖ < ε for all l, k > N. (5)

Assumption (4a) ensures x(k) ∈ D as long as x(0) ∈ D. From (3) and (4b) we get:

‖x(k+1) − x(k)‖ = ‖g(x(k))− g(x(k−1))‖ ≤ L‖x(k) − x(k−1)‖ ≤ Lk‖x(1) − x(0)‖.

We can write x(k+p) − x(k) =
∑p

i=1(x
(k+i) − x(k+i−1)), thus

‖x(k+p) − x(k)‖ ≤
p∑

i=1

‖x(k+i) − x(k+i−1)‖

= (Lp−1 + Lp−2 + · · ·+ 1)‖x(k+1) − x(k)‖ ≤ Lk

1− L
‖x(1) − x(0)‖,

1D is convex if θy + (1− θ)v ∈ D for all y, v ∈ D and θ ∈ [0, 1].
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since L < 1. For the same reason, the sequence satisfy (5), so the sequence converges to some
ξ ∈ D. Since the inequality is true for all p > 0 it is also true for ξ, proving (4c).
To prove that the fixed point is unique, let ξ and η be two different fixed points in D. Then

‖ξ − η‖ = ‖g(ξ)− g(η)‖ < ‖ξ − η‖

which is impossible.

For a given problem, it is not necessarily straightforward to justify the two assumptions of the
theorem. But it is sufficient to find some L satisfying the condition L < 1 in some norm to
prove convergence.
Let x = [x1, . . . , xm]T and g(x) = [g1(x), . . . , gm(x)]T . Let y,v ∈ D, and let x(θ) = θy+ (1−
θ)v be the straight line between y and v. According to the mean value theorem for functions,
for each gi there exist at θ̃i such that

gi(y)− gi(v) = gi(x(1))− gi(x(0)) =
dgi
dθ

(θ̃i)(1− 0), θ̃i ∈ (0, 1)

=
m∑
j=1

∂gi
∂xj

(x̃i)(yj − vj), x̃i = θ̃iy + (1− θ̃i)v

since dxj(θ)/dθ = yj − vj . Then

|gi(y)− gi(v)| ≤
m∑
j=1

| ∂gi
∂xj

(x̃i)| · |yj − vj | ≤

 m∑
j=1

| ∂gi
∂xj

(x̃i)|

max
l
|yl − vl|.

If we let ḡij be some upper bound for each of the partial derivatives, that is

| ∂gi
∂xj

(x)| ≤ ḡij , for all x ∈ D.

then

‖g(y)− g(v)‖∞ =

max
i

m∑
j=1

ḡij

 ‖y − v‖∞.

We can then conclude that (4b) is satisfied if

max
i

m∑
j=1

ḡij < 1.

Newton’s method

Newton’s method is a fixed point iterations for which

g(x(k)) = x(k) − Jf (x(k))−1f(x(k)), (6)

where the Jacobian is the matrix function

Jf (x) =


∂f1
∂x1

(x) · · · ∂f1
∂xm

(x)
...

...
∂fm
∂x1

(x) · · · ∂fm
∂xm

(x)

 .
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The Newton method can be derived as follow: Consider element i in f , that is fi(x). Do a
multidimensional Taylor expansion of fi(ξ) around the vector x(k), using e(k) = ξ − x(k) This
gives

0 = fi(x
(k)
1 + e

(k)
1 , . . . , x(k)m + e(k)m ) = fi +

∂fi
∂x1

e
(k)
1 + · · ·+ ∂fi

∂xm
e(k)m +Ri

The function and all the derivatives are evaluated in x(k). The remainder term Ri consists of
quadratic terms like O(e

(k)
i e

(k)
j ). If the error is small, this term is even smaller, so let us now

ignore it and replace the errors e(k)i with an approximation to the error ∆x
(k)
i to compensate.

Doing so for each i = 1, 2, . . . ,m gives us the following system of linear equations,

fi +
∂fi
∂x1

∆x
(k)
1 + · · ·+ ∂fi

∂xm
∆x(k)m = 0, i = 1, 2, . . . ,m.

which is
f(x(k)) + Jf (x(k)) ·∆x(k) = 0.

Solve this with repect to ∆x(k). Remember that ∆x(k) ≈ ξ − x
(k)
k it seems reasonable to

update our iterate with this amount, thus

x(k+1) = x(k) + ∆x
(k)
k

which finally results in (6).
It is possible to prove that if i) (1) has a solution ξ, ii) Jf (x) is nonsingular in some open
neighbourhood around ξ and iii) the initial guess x(0) is sufficiently close to ξ, the Newton
iterations will converge to ξ and

‖ξ − x(k+1)‖ ≤ K‖ξ − x(k)‖2

for some positive constant K. We say that the convergence is quadratic.
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