
Department of Mathematical Sciences

Examination paper for TMA4215 Numerical Mathematics

Academic contact during examination: Trond Kvamsdal

Phone: 930 58 702

Examination date: 13. December 2014

Examination time (from–to): 09:00–13:00

Permitted examination support material: C:

• Endre Süli and David Mayers An Introduction to Numerical Analysis (a printout/copy is
accepted)

• TMA4215 Numerical Mathematics: Collection of Lecture Notes (15. November 2013,
62 pages)

• Rottmann: Matematisk formelsamling

• Approved calculator

Language: English

Number of pages: 6

Number pages enclosed: 0

Checked by:

Date Signature





Solution - TMA4215 Numerical Mathematics, 13. December 2014 Page 1 of 6

Problem 1

a) The matrix is symmetric as aij = aji ∀i, j = 1, 3. Furthermore, all diagonal
terms are positive and we have aii >

∑3
j=1,j 6=i |aij|, i.e. the matrix is diago-

nally dominant. It then follows then from Gershgorin theorem that all the
eigenvalues are real and positive, hence the matrix is positive definit.

b) The conditioning number κ(A) = ||A||||A−1||. For matrices with large con-
dition numbers (ill-condition equation system) may small perturbations in
the right hand side result in large errors in the computed unknowns.

Problem 2

a) The interpolating polynom of lowest order is: p2 = 2 + 3x+x2. This may be
found by using the definition of Lagrange polynomial (Equation (6.2) in Suli
and Mayers), but here the use of Newton interpolation formula and divided
differences (see slides by Elena Celledoni) may be consider advantageous as
that makes next question easier to solve.

xi f [xi] f [xi, xi+1] f [xi, xi+1, xi+2]
0.0 2.0

5.0
2.0 12.0 1.0

8.0
3.0 20.0

(1)

Thus we get: p2(x) = 2 + 5(x− 0) + 1(x− 0)(x− 2) = 2 + 3x+ x2.

b) We now just add one row and column to our table:

xi f [xi] f [xi, xi+1] f [xi, xi+1, xi+2]
0.0 2.0

5.0
2.0 12.0 1.0

8.0 0.0
3.0 20.0 1.0

7.0
1.0 6.0

(2)
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Thus we get: p2(x) = 2+5(x−0)+1(x−0)(x−2)+0(x−0)(x−2)(x−3) =
2 + 3x+ x2.

c) A third order polynomial p3(x) = c0 + c1x + c2x
2c3x

3 has four unknown
coefficient that may be determined by four independent constraints. Here
we choose the following constraints: p(0) = f(0), p′(0) = f ′(0), p(a) =
f(a), andp′(a) = f ′(a), i.e for f(x) = x5 we get the following system to
solve: 

1 0 0 0
0 1 0 0
1 a a2 a3

0 1 2a 3a2

×

c0
c1
c2
c3

 =


0
0
a5

5a4

 (3)

We see immediately that c0 = c1 = 0 thus we end up with the following
system: [

a2 a3

2a 3a2

]
×
[
c2
c3

]
=
[
a5

5a4

]
(4)

This gives c2 = −2a3 and c3 = 3a2.

d) First note that 2n+ 1 = 3 i.e. n = 1.
We have that f(x)− p3(x) = x5 − 3a2x3 + 2a3x2.
Theorem 6.4 on page 190 in the textbook by Süli and Mayers:
Πn+1(x) = (x− 0)(x− a) and f (2n+2)(ξ) = 120ξ

We then get: 120
24 ξ(x

4− 2ax3 + a2x2), so if we insert ξ = 1
5(x+ 2a) we obtain

f(x)− p3(x). Since f (2n+2)(x) is a linear function this value is unique.

Problem 3

a) Determine the values cj, j = −1, 0, 1, 2, such that the quadrature rule
Q(f) = c−1f(−1) + c0f(0) + c1f(1) + c2f(2) gives the correct value for the
integral

∫ 1
0 f(x)dx when f is any polynomial of degree 3.

Direct construction gives as explained in Section 10.3 on page 280-281 in the
textbook of Suli and Mayers:

1 1 1 1
−1 0 1 2
1 0 1 4
−1 0 1 8

×

c−1
c0
c1
c2

 =


1
1
2
1
3
1
4

 (5)
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The solution is: c−1 = − 1
24 , c0 = 13

24 , c1 = 13
24 , and c2 = − 1

24 . Notice that the
weights ci are symmetric about the midpoint 0.5 of the given interval and
sums to 1.0

b) Define the composite trapezium rule Tm, the composite Simpson rule Sm and
the composite midpoint rule Mm, each with m subintervals. Show that:
Mm = 2T2m − Tm, Sm = (4T2m − Tm)/3, and Sm = (2Mm + Tm)/3
The composite trapezium rule:

Tm(a, b) = h
[1
2f(x0) + f(x1) + . . .+ f(xm−1) + 1

2f(xm)
]

(6)

The composite Simpson rule:

Sm(a, b) = h

3 [f(x0) + 4f(1
2(x0 + x1)) + 2f(x1) + 4f(1

2(x1 + x2)) + 2f(x2)

+ . . .+ 2f(xm−1) + 4f(1
2(xm−1 + xm)) + f(xm)]

(7)

Notice: We have m intervals that gives 2m + 1 points, i.e. to be consistent
with the intervals for Tm and Mm (h = (b − a)/m we use the midpoints
1
2(xi − xi+1) for all i = 0,m− 1.
The composite Midpoint rule:

Mm(a, b) = h
[
f(1

2(x0 + x1)) + . . .+ f(1
2(xm−1 + xm))

]
(8)

To show that Mm = 2T2m − Tm, first observe:

2T2m(a, b) = h[12f(x0) + f(1
2(x0 + x1)) + f(x1)

+ . . .+ f(1
2(xm−2 + xm−1)) + f(xm−1) + 1

2f(xm)]
(9)

When we subtract Tm from T2m all the terms at the points xi for i = 0,m
cancels out and only the the terms f(1

2(xi + xi+1)) for i = 0,m − 1 at the
midpoints remains, i.e. we get Mm.

We now show that Sm = (2Mm + Tm)/3:

Sm =
m−1∑
i=0

h

6

[
f(xi) + 4f(1

2(xi + xi+1)) + f(xi+1)
]

(10)
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We see now that the 2Mm/3 corresponds to all the terms at the midpoints
1
2(xi +xi+1)) for i = 0,m−1 and Tm/3 corresponds to all terms at the points
xi for i = 0,m.
Finally we easily may show that Sm = (4T2m − Tm)/3 by insertion:

Sm = (2Mm + Tm)/3 = 2((2T2m − Tm) + Tm)/3 = (4T2m − Tm)/3 (11)

c) We will avoid any numerical integration methods that are based on global
Lagrange interpolation using equidistant interpolation points, i.e. Newton-
Cotes quadrature as they have negative weights for high polynomial order.
Gaussian quadrature will work fine. Composite Newton-Cotes may work
depending on the choice of subintervals. Composite Gauss will be a good
choice.

d) The characteristic of orthogonal polynomials is that given and interval [a, b]
and a weight function w(x) we have:∫ 1

−1
φiφjw(x)dx = 0 ∀i 6= j (12)

See Definition 9.4 page 260 in the textbook of Süli and Mayers.
Orthogonal polynomials play an important role in finding the best polyno-
mial approximation of function measured in the 2-norm. The zeroes of a
set of orthogonal polynomials may also be used to determine the optimal
numerical sampling points in a numerical integration scheme.
E.g. the Legendre polynomials are a set of orthogonal polynomials and on
the interval [−1, 1] they are: φ0(x) = 1, φ1(x) = x, and φ2(x) = 3

2x
2 − 1

2 .
The orthogonality condition is∫ 1

−1
φiφjdx = 0 ∀i 6= j (13)

We have that ∫ 1

−1
1 · xdx = |1−1

1
2x

2 = 0 (14)

∫ 1

−1
1 · 3

2x
2 − 1

2dx = |1−1
1
2x

3 − 1
2x = 0 (15)

∫ 1

−1
x · 3

2x
2 − 1

2dx = |1−1
3
8x

4 − 1
4x

2 = 0 (16)
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Problem 4

a) The given one-step method is denoted Improved Euler and is a Runge-Kutta
method with the following Butcher tableau:
In order to be consistent a method has to be at least of order 1, and for

0 0 0
1 1 0

1
2

1
2

(17)

Runge-Kutta methods that means
s∑

i=1
b1 = 1 (18)

Improved Euler is a two-stage method, s = 2 and we have:
2∑

i=1
b1 + b2 = 1

2 + 1
2 = 1 (19)

i.e. Improved Euler is consistent.
Regarding the the local truncation error we observe that Improved Euler is
of order p = 2 as

s∑
i=1

bici = 1
2 (20)

but i does not fulfill the 3rd order condition (see table on page 46 in The
Collection of Lecture notes). Thus the local truncation error ln+1 is on the
form:

ln+1 = Ψ(tn, yn)h3 +O(h4) (21)
For Improved Euler the local truncation error is given by:

ln+1 = 1
6h

3
[
fy(fx + fyf)− 1

2(fxx + 2fxyf + fyyf
2)
]

+O(h4) (22)

b) To find the stability region we solve the eigenvalue problem

y′ = λy (23)

with the Improved Euler method:

yn+1 = yn + 1
2h [λyn + λ(yn + hλyn)] =

(
1 + hλ+ 1

2h
2λ2

)
yn (24)
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Let z = hλ, the stability function reads:

g(z) = 1 + z + 1
2z

2 (25)

The region of stability, G, is defined as that part of the complex plane where
g(z) is contracting:

G = {z ∈ C such that |g(z)| < 1} (26)

Improved Euler is an explicit Runge-Kutta method, i.e. it is not A-stable.
To be A stable the region of stability has to contain the whole negative (left)
complex half-plane, and this is not the case for the stability function g(z) for
Improved Euler given above.

c) Linear multistep methods LMM may be written on the form:

k∑
l=0

αlyn+1 = h
k∑

l=0
βlfn+l (27)

Here, we have α0 = −5, α1 = 4, α2 = 1, β0 = 2, β1 = 4 and k = 2.
By inserting this in Equation (71) on Page 55 in the Collection of Lecture
Notes we find: C0 = . . . = C3 = 0 whereas C4 6= 0, i.e. the order of the
method is 3.

d) A LMM is convergent if and only if it is both Consistent and Zero-stable.
The given LMM is consistent (i.e. order p ≥ 1). To be zero-stable all the
roots ri of the corresponding first characteristic polynomial:

k∑
l=0

αlr
l (28)

has to fulfill |ri| ≤ 1. We have:

g(r) = r2 + 4r − 5 = (r − 1)(r + 5) (29)

The roots are: r1 = 1 and r2 = −5, i.e. the given LMM is not convergent.


