
Norwegian University of Science
and Technology
Department of Mathematical
Sciences

TMA4215 Numerical
mathematics

Autumn 2015

Project 2

Last update: October 27, 2015

Instructions

This project counts for 20% of the final grade in the course.

Deadline: November 17, 23:59.

Group size: Up to 4 students.

To be handed in:

• A report of maximum 6 pages, using the given LaTeX-template (or as similar as
possible if another word-processing system is used). The report should be submitted
as a pdf-file.
• One well structured, well documented and self-contained MATLAB file.

Send the files (maximum 2) to lars.odsater@math.ntnu.no within the deadline.

Use the student numbers (no name, no candidate number) in the report, and make sure
that we can identify your student numbers from the MATLAB file.

Failure to meet the instruction above may cause the project to be dismissed!

Some comments and advices

• In the evaluation, quite some emphasis will be given to the presentation. If it turns
out that you are not able to fulfill the project completely, or your final program do
not work, then focus on what you have done. We advice you to stop doing new stuff
on Sunday 15th, and spend the last days on fine-tuning the report and the MATLAB
file to be handed in.

• Equally important as obtaining the actual results, are to discuss them properly. The
lecture notes [2] and text book [1] should be sufficient to do the project, but you are
encouraged to use other sources of information as well (e.g. Wikipedia, Google or
Google Scholar). Remember to always refer to the source when used.

October 27, 2015 Page 1 of 6

• We do not want you to present all the tasks in your MATLAB file. What we want
is to be able to reproduce the last result(s) you present in your report with that
program. This means a program that produce the error plots referred to in Task 11.
If you are not able to finish the last task, then your enclosed MATLAB file may
solve one of the subtasks.

• With a well-documented and self-contained MATLAB file we mean that the file

– includes sufficient information in the initial comment lines to make it clear for
the user what the program does, and how to use it. This information should be
available by writing help filename.

– executes and provides the expected results without any problems. In particular
this means that all subfunctions you write must be included in this file.

• The tasks described below are there to help you learn and master the material. They
should be done, but the results should in general not be included in the report as
Task 1, Task 2, etc. However, you may want to include some of them as examples,
or to justify that the described procedure works.

• An important part of implementing numerical methods is to test the code. This can
be done by testing on simple problems where you know the solution. An example
is that quadrature rules are exact for some problems, e.g., polynomials of a certain
degree. You should perform these kind of tests for your own verification, and may
include some of them in your report to demonstrate that your code and algorithms
work.

The LATEX template, including some instruction on how to write the report, will be provided
on the project webpage.

Objective of the project

The topics for this project is numerical quadrature and interpolation. You will implement
and compare different methods, and discuss your results. In particular, you will consider
the function

f(x) =
1

1 + x2
, x ∈ [−5, 5], (1)

which should be familiar to you from the lectures and the text book [1]. An important
notion for this kind of problem is Runge’s phenomenon.

October 27, 2015 Page 2 of 6

Part I: Numerical integration

In this part you will implement and compare some common quadrature formulas for ap-
proximating the integral ∫ b

a
f(x) dx. (2)

In general, quadrature formulas can be written as

Qn(f) =
n∑

i=0

wif(xi), (3)

where wi and xi are called the quadrature weights and points, respectively. The number
of degrees of freedom (dof) for such a formula is equal to the number of quadrature points,
i.e., n+ 1. For a known function f , the approximation error, In(f), is defined as

In(f) =

∣∣∣∣∫ b

a
f(x) dx−Qn(f)

∣∣∣∣ . (4)

1 Newton-Cotes quadrature. Implement a Matlab function that approximates
the integral (2) by the Newton-Cotes formula. Your function should take as input
a function handle to f , the order of the method, n, and the end-points a and b. It
should return the approximation Q(f).

The weights for Newton-Cotes quadrature will be given in a separate file on the
web-page.

2 Gauss quadrature. Implement a similar function as above, but that instead uses
Gauss-Legendre quadrature. The input and output variables should be the same.

The weights and quadrature points for Gauss-Legendre quadrature will be given in
a separate file on the web-page.

3 Comparison. Apply your implemented quadrature routines on the test problem
(1). Plot the error In(f) as a function of n on an appropriate scale. If the methods
converge, can you determine at which rate? Comment, explain and discuss your
results.

A common technique is to use composite methods. This means to divide the interval
[a, b] into m subintervals, and then apply a quadrature formula on each subinterval and
sum up the results. Denote by nc the order of the quadrature on each subinterval. For
example, composite Newton-Cotes with nc = 2 is known as the composite Simpson rule.
For composite Simpson, n = 2m (ct. Equation (3)) and the number of dof is 2m+ 1.

October 27, 2015 Page 3 of 6

4 Composite quadrature rules. Approximate the integral (2) by composite Newton-
Cotes and composite Gauss-Legendre. Use equally large subintervals and the same
quadrature formula on each subinterval. You should be able to reuse your imple-
mentations from Task 1 and 2. Try with different number of subintervals, m, and
different quadrature orders, nc. Again, plot the error In(f) as a function of n on
an appropriate scale. If the methods converge, can you determine at which rate?
Compare with the results from Task 3. Comment, explain and discuss your results.

OBS! When calculating the error, In(f), for composite methods it is important that
n is equal to the total number of quadrature points minus 1.

Part II: Interpolation

In this part you will implement different methods to interpolate a given function f(x) over
an interval [a, b]. In particular, these methods will be considered:

• Lagrange interpolation
• Linear splines interpolation
• The natural qubic splines interpolation

Denote by x = (x0, x1, . . . , xn) the vector of interpolation points and assume that

a ≤ x0 < x1 < . . . < xn ≤ b.

Furthermore, y will be the vector of function values at the interpolation points, i.e., yi =
f(xi). Detailed descriptions of the interpolation methods can be found e.g. in [1] or [2].
Let pn(x) be the interpolation function that interpolates the n+ 1 points (xi, yi), i.e.,

pn(xi) = yi, for i = 0, 1, . . . , n.

We measure the interpolation error by the two norms,

E2 =

√∫ b

a
(f(x)− pn(x))2 dx,

E∞ = max
x∈[a,b]

|f(x)− pn(x)|.

Degrees of freedom

The number of degrees of freedom (dof), denoted N hereafter, is the number of free pa-
rameters required to determine the interpolation function. For Lagrange interpolation, it
is simply equal to the number of interpolation points, i.e., N = n + 1. For composite
methods it is not that simple. A part of the exercises below is to determine N for the
different methods.

When comparing the error for different methods, it is important to use the same number
of dof in each method.

October 27, 2015 Page 4 of 6

5 Lagrange interpolation. First, implement a routine for calculating the divided
difference table from x and y. Then, implement a routine that takes as input this
table and a vector of evaluation points, and returns the value of the Lagrange inter-
polation polynomial at these evaluation points. Finally, write a function that takes
as input x and y, and returns a function handle to evaluate the Lagrange polynomial.

Test your code on the problem (1) with different numbers of equidistant interpolation
points. Calculate the inf-norm, E∞, and see if you can reproduce the results in Table
6.1 in [1]. This should serve as a verification of your code.

Hint: Exercise set 6 may be of good help here. Furthermore, if eval_lagrange is
the function taking a divided difference table (denote tab below) and a vector of
evaluation points t, then the command

fun = @(t) eval_lagrange(tab, t);
defines a function handle fun. Calling fun(a) should then give you the Lagrange
polynomial evaluated at a (a can be a vector).

6 Interpolation error. Implement a function that takes as input function handles
to the analytic function f and the interpolation polynomial pn, and the endpoints
of the interval. The function should calculate and return the interpolation error E2

using numerical quadrature. Chose one of your quadrature routines from Part I. In
you final report, you should give some motivation for your choice.

Hint: Let f and p be the two function handles. Then a functional handle to the
integrand can be defined by the following command:

integrand = @(t) (f(t)-p(t)).ˆ2;

7 Chebyshev nodes. Using equidistant interpolation points may not be the optimal
choice for some problems. An alternative is the Chebyshev nodes.

Write a function that takes as input the endpoints of the interval, and the number
of nodes, and then returns a vector with the Chebyshev nodes.

8 Composite Lagrange interpolation. As was done for numerical integration, you
should test composite Lagrange interpolation. Hence, divide the interval [a, b] into
m equally large subintervals and use Lagrange interpolation of order nc on each
subinterval.

Show that the number of degrees of freedom, N , for composite Lagrange is equal to
m(nc + 1)− (m− 1) = mnc + 1.

9 Linear splines. Implement a function that takes as input x, y and a vector of
evaluation points, and returns the linear splines approximation at these evaluation
points. What are the number of degrees of freedom for linear splines?

Test your implementations on the function (1). Use equidistant points, such that
xi − xi−1 = h for all i, and plot the error E∞ against h in a log-log plot. Use this
plot to estimate the convergence order. Do your results agree with theory?

October 27, 2015 Page 5 of 6

10 Cubic natural splines. The cubic natural splines are described in Section 11.4 in
[1] or Section 5.2 in [2]. Let σ = (σ0, σ1. . . . , σn) be the vector of second derivatives of
the cubic spline s2 at the interpolation points x. The values of σ can be determined
from the linear system of equations (11.7) in [1] (or see page 33 in [2]). Write this
system as a matrix-vector equation, Aσ = b. Implement routines to calculate the
cubic splines that interpolates f .

What are the number of degrees of freedom for the natural cubic splines, that is, how
many coefficients for determining the piecewise polynomial are there in total?

Hint: To avoid solving the linear system Aσ = b every time you need to evaluate
the cubic spline, you should use a similar approach as was suggested for Lagrange
interpolation.

11 Comparison. Consider the test problem (1). For each of the interpolation methods
below, plot the error against the number of degrees of freedom, N . Use both the 2-
norm and the∞-norm. Plot the interpolation polynomials together with the original
function f for N = 11.

a) Lagrange interpolation with equidistant nodes

b) Lagrange interpolation with Chebyshev nodes

c) Composite Lagrange interpolation

d) Linear splines with equidistant nodes

e) Natural cubic splines with equidistant nodes

Compare the results and discuss them. It is important that you base your discussion
on the lecture material or other sources. Remember to always refer to the source.

References

[1] Süli, E. & Mayers, D. F. An introduction to numerical analysis (Cambridge university
press, 2003).

[2] TMA4215 Numerical Mathematics: Collection of lecture notes (2013). URL http:
//www.math.ntnu.no/emner/TMA4215/2014h/Exercises/AK-LectureNotes.pdf.

October 27, 2015 Page 6 of 6

