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Problem 1 (Counts 50%)

a) Use the error propagation law for y = ¢(z)

0p x
0y =-——90
' oey
which for p(z) = In(z) becomes
oy = ! ox
Y In(x)
b)
kl = f(trw yn)

ko = f(tn + %ayn + %kl)
Yn+1 = Yn + %(kl + 3l€2)

c) We know that an explicit method of s-stages can be of maximum order s. So in this
case, we only have to check that the method is of order 2:

Order 1 : b + by = =1

1

L3
4

Order 2 : b1C1 + bQCQ = 0

N
N W

A~ w

The order of the method is 2.

d) The order of the tree is the number of nodes, thus p(7) = 6. The order condition becomes:

5 1
bt CoinCr = —
zaz]cjazkck’ - .

e 36
1,5,k=1

e) The Gauss-Seidel scheme is given by
2 = 1(1 +2a87)
2D = ;(4 —aM ey k=0,1,2,3. ..
3 = 2

1
RY _5(_2 B x(kJrl))

The coefficient matrix is strict diagonal dominant,( 4 > 2, 3 > 2 and 2 > 1) so yes, the
iterations will converge for all choices of initial values.
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f) The Gershgorin disks are:

Im

0.2

—0.4 +

from which we can conclude that p(A) = max;—1 23 |\i| < 1.

g) We know that orthogonal matrices preserves the 2-norm, that is ||Qz||2 = [|z|2. So
a = ||z||o = 5. Using Householder reflections, we have
1 [-2
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oo [-[) v
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h) This is a cubic spline if S is two times continuous differentiable. We only have to check
this for z = 2. Let S; = 2%/2 and Sy = 23/2 — 522 /2 + 5z — 2.

S1(2) =2 S5(2) =1
so this is not a cubic spline.

i) The parametric quadratic Bézier-curve is

—t2+2t+1
B(t) — PO bg7o(t) + P1 bg7l(t) + P2 6272(0 - [ ] .

—3t2+2t+1
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0.5

Problem 2 (Counts 20%)

a)
F(0.1) = L (—1e0-2 +e 0t — e 4 1e°~2) = 1.0025025
' 0.13\ 2 2 '

b) Expand F'(h) by Taylor expansions:

F(h) = 53 <;(f(330 +2h) — f(zo — 2h)) — (f (w0 + ) — f(z0 — h)>)
1 (& 2R ad N
=73 (;)2(1 —(=1)") o F® (o) —pZO(l —(-1) >Hf( )(370))
N 0_01 (2q i 1)! (220 = 1) D o) #07D

= O (zg) + zllf(5)(x0)h2 +Cyht+
so Cy = fW(z0)/4.
c) Use extrapolation: Since
F(h) = f®(x0) + Cyh® + Cyh* + Ch® + - --
we can show that

G(R) = 5 (4F(4) = F(0)) = fO(x0) + Dah + Dol + -
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and
H(R) = = (16F (%) — F(0)) = fO(an) + Koht 4

where D, and K, are some constants independent of 4. From this we can find

F(h) = 26.69065
F(%) = 28.76826 G(h) = 29.46080
F(%) =29.30727 G(%) = 29.48694 H(h) = 29.48868

where h = 0.4. So the best approximation we can get from the available data is 29.48868.
(For comparision, the correct answer is 29.48872149.)

Problem 3

a) From (1) in the appendix infer that

k AR
A(t) = qltnss + 5h) = ps1 + 3 (=1) ( j. )wynﬂ,

j=1

and so an application of the chain rule, using that

t—1tn
t(s) = tnt1 + sh and s(t) = — 2L

k _
o)
t=tn+1 j=1 ds J

Thus we obtain the desired form since

results in

ds

s=0 dt

dg(t(s))
ds

, 1
q/(tn+1) = > ijn+1 . E
s=0

For full score, this should be proved!

b) We have:
3
Z %ijn—&-l = (yn+1 — yn) + %(yn—&-l = 2y + yn—l)
j=1
so the 2-step BDF -method is given by

%yn-l—l - 2yn + %yn—l = hfn—i—l'
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The characteristic polynomial is
pry=3r" —2r+1=3(r-1)(r-3)

So r; < 1 for ¢ = 1,2, and the one of length 1 is single. In conclusion, the method is
zero-stable.

The local discretization error is defined by
Wi = %y(tn,l +2h) — 2y(t,—1 + h)+ %y(tn,l) — hy'(tn_1 + 2h).
By taylor-expansions around ¢,,_; we get
o = 3(y+2hy' + Zh%y" + Zh* + - )
. 2<y + hy' + %th// + %h{ﬂy/// + .. )

+ 3y
_ hy/ _ 2h2y// _ §h3y/// _ %h‘ly(‘” .

The method is of order 2, and the error constant C3 = —1/3.

Problem 4 The second equation can be rewritten as zy = (sinz; + cosxsy)/4. The first
equation can be solved with respect to xq, and since we only are interested in the positive
solution, we try

T = i)

Sl

Ty = (sinxl + cosxg).

NN

or

G(x) = (g1(x1,22), g2(21, 22)] = [1 e )]

Z(sin T + CcoSs Ty

Let us now suggest a domain D. First, we assume both solutions to be positive, so a = ¢ = 0.
From the second equation we get that x5 < 1/2, which again mean that z; < 1/(2v/5). So

D={zcR*:0<x xe < =}

N | =

1
<—,0<

seems like a reasonable choice. If we can show that

G(D)eD and ||G(y)— GW)| <L|ly—v|| with L<1 Va,yeD.
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then Banach’s fixed-point theorem guarantees convergence towards a unique fixed point & € D.

From the construction of D we know that the first condition is satisfied as long as 0 <
g2(x1,22) < 1, which is true since 0 < sinz; < 1 and 0 < coszy < 1 for all (z1,29) € D
(sharper bounds can be found, but are not required.) Using the mean value theorem, we know
that the second condition is satified in the max-norm if

2 ag}
i=1,2 | Ox;
J=117
The Jacobian of G
991 Og1 0 .
JG — 8x1 81'2 — \/5
% % icosa:l — 1 sinay

and
1 1 1
L = max {\/5, 1 (1 + sin 2)} = max{0.4472,0.3699} = 0.4472 < 1.



