6.4 Adams-Bashforth-Moulton methods

The most famous linear multistep methods are constructed by the means of interpolation. For
instance by the following strategy:

The solution of the ODE satisfy the integral equation

Y(tns1) — y(tn) = / " Fy ). (48)

Assume that we have found f; = f(t;,y;) fori =n—k+1,--- ,n, with ¢; = tog+th. Construct
the polynomial of degree k — 1, satisfying

pk—l(tl):f(tl7y’b)7 lzn—k—l-l,,n

The interpolation points are equidistributed (constant stepsize), so Newton’s backward differ-
ence formula can be used in this case (see Exercise 2), that is

k-1
Pro1(t) = pp1(tn + sh) = fu+ Y _(=1) <_]S> Vi,
i=1

where

J!

(_1)j(—s> _sls1) (s +i— 1)

and ' ‘ '
vofn = fnv vjfn = vj_lfn - vJ_lfnfl-

Using yn1 = y(tnt1). yn = y(tn) and pp1(t) = f(¢,y(t)) in (48) gives

tn+1 1
Ynt1 — Z/n/ pr-1(t)dt = h/ Pr—1(tn + sh)ds
tn 0

— hfo+ hki ((_1)J' /01 <_18> ds) Vi, (49)

This gives the Adams-Bashforth methods

k—1

1
Uit = Un =h D> %V e =1, = (—1)J/0 < . )ds.

J=0

Example 6.6. We get

1 1
1 1 )
’}/0:1, ’yl:/ Sdszg, ")/2:/ S(S;— )dS:—
0 0

and the first few methods becomes:

Yn+1 — Yn = hfn

3 1
n - n:h SJn — S Jn—
Yntl — Y (2f 2f 1)

23 4 5
Yntl —Yn =N <12fn - gfn—l + 12fn—1>
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A k-step Adams-Bashforth method is explicit, has order k (which is the optimal order for
explicit methods) and it is zero-stable. In addition, the error constant Cpy1 = 7. Implicit
Adams methods are constructed similarly, but in this case we include the (unknown) point
(tn+1, fnt1) into the set of interpolation points. So the polynomial

k
P(E) = Dl + 5h) = For + 3 (1) (‘5; 1) Vi fin
j=1

interpolates the points (¢;, fi), i =n—k+1,...,n+ 1. Using this, we get the Adams-Moulton
methods

k 1
*v77] * * j —s+ 1
Yn+l —Yn =N E ’Yjvjfn+17 Y =1, Y= <_1)]/ < . >d3
=0 0 J
Example 6.7. We get

1 1
1 (s —1)s 1
"o N /0 (s —1)ds 5 T2 /0 5 S 19

and the first methods becomes

Yn+1 = Yn = hfpia (Backward Euler)

1 1
Ynt1 — Yn = h <2fn+1 + 2fn> (Trapezoidal method)

5 2 1
Yntl — Yn =h <12fn+1 + gfn - 12fn—1> .

A k-step Adams-Moulton method is implicit, of order k + 1 and is zero-stable. The error
constant Cpi1 = 7}, ;. Despite the fact that the Adams-Moulton methods are implicit, they
have some advantages compared to their explicit counterparts: They are of one order higher,
the error constants are much smaller, and the linear stability properties (when the methods
are applied to the linear test problem y’ = A\y) are much better.

k|10 1 2 3 4 5 6
1 1 5 3 251 95 19087
Tk 2 12 8 720 288 60480

* 07 L 1L _ 1 19 3 _ 863
Tk 2 12 24 720 160 60480

Table 1: The +’s for the Adams methods.

6.5 Predictor-corrector methods

A predictor-corrector (PC) pair is a pair of one explicit (predictor) and one implicit (corrector)
methods. The nonlinear equations from the application of the implicit method are solved by
a fixed number of fixed point iterations, using the solution by the explicit method as starting
values for the iterations.
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Example 6.8. We may construct a PC method from a second order Adams-Bashforth scheme
and the trapezoidal rule as follows:

h

yﬂl =yn + 5(3fn — fn-1) (P : Predictor)
forl=0,1,....m

f,[ﬂrl = f(tn+1,y7[f]+1) (E : Evaluation)

h

y,[fj:] =yn+ 5( ﬂrl + fn) (C : Corrector)
end

_ m
Yn+1 = YUps1
fr1 = f(tnt1, Ynt1). (E : Evaluation)

Such schemes are commonly referred as P(EC)™E schemes.

The predictor and the corrector is often by the same order, in which case only one or two
iterations are needed.

Error estimation in predictor-corrector methods.

The local discretization error of some LMM is given by

k

W1 = Y _(uy(tn—is141 — BB (tnrs141)) = BT Copay P (tn_pir) + O(BPF2).
=0

But we can do the Taylor expansions of y and y' around ¢, rather than ¢, ;1. This will not
alter the principal error term, but the terms hidden in the expression O(h?*2) will change.
As a consequence, we get

W1 = WP Cpiay Pt (t,) + O(RPF2).
Assume that y; = y(t;) fori=n—k+1,...,n, and o = 1. Then
Mgt = Y(tns1) = Ynr1 + O(WPT2) = BPHC 1y (1) + O(WPF2).

Assume that we have chosen a predictor-corrector pair, using methods of the same order p.
Then

(P) Y(tnsr) — yyy ~ PHLCR 0D (1),
(C) y(tn—i-l) — Yn+1 = hp+10p+1y(p+l)(tn)a

and o o
Yn+1 — ?JLJ]A ~ th(Cz[aJ]rl — i)y P (tn).
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From this we get the following local error estimate for the corrector, called Milne’s device:

C
Y(tn+1) — Ynt1 ~ m]p—ﬂ(yn-i-l - yﬂl)-
p+1] CP'H

Example 6.9. Consider the PC-scheme of Example 6.8. In this case
5 1 Cha1 1
co - _ Coq = —— S S
p+1 ) p+1 ) 0
12 12 ¥y
Apply the scheme to the linear test problem

/

y =-Y, y(O) = 17
using yo = 1, y1 = e and h = 0.1. One step of the PC-method gives

Uod | o) w02) =] | Bl — )
00819112 [ 4.49-10~%| 3.81-10~*
10.818640 | 2.25-107° | 9.08-107> | 7.86-1075
210.818664 | 1.12-107% | 6.72-107° | 7.47-107°
310.818662 | 5.62-1078 | 6.84-107° | 7.49-107°

After 1-2 iterations, the iteration error is much smaller than the local error, and we also
observe that Milne’s device gives a reasonable approximation to the error.

Remark Predictor-corrector methods are not suited for stiff problems. You can see this
by e.g. using the trapezoidal rule on 3y = Ay. The trapezoidal rule has excellent stability
properties. But the iteration scheme

h
) =y + §A(yﬁ}+1 )

will only converge if |hA/2| < 1.

For stiff system, the Backward differentiation formulas (BDF) is to be preferred. Those are
derived in exercise 5.
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