
6.4 Adams-Bashforth-Moulton methods

The most famous linear multistep methods are constructed by the means of interpolation. For
instance by the following strategy:

The solution of the ODE satisfy the integral equation
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The interpolation points are equidistributed (constant stepsize), so Newton’s backward differ-
ence formula can be used in this case (see Exercise 2), that is
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This gives the Adams-Bashforth methods
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Example 6.6. We get
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A k-step Adams-Bashforth method is explicit, has order k (which is the optimal order for
explicit methods) and it is zero-stable. In addition, the error constant C

p+1 = �

k

. Implicit
Adams methods are constructed similarly, but in this case we include the (unknown) point
(t
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), i = n�k+1, . . . , n+1. Using this, we get the Adams-Moulton
methods
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Example 6.7. We get
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A k-step Adams-Moulton method is implicit, of order k + 1 and is zero-stable. The error
constant C

p+1 = �

⇤
k+1. Despite the fact that the Adams-Moulton methods are implicit, they

have some advantages compared to their explicit counterparts: They are of one order higher,
the error constants are much smaller, and the linear stability properties (when the methods
are applied to the linear test problem y

0 = �y) are much better.
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Table 1: The �’s for the Adams methods.

6.5 Predictor-corrector methods

A predictor-corrector (PC) pair is a pair of one explicit (predictor) and one implicit (corrector)
methods. The nonlinear equations from the application of the implicit method are solved by
a fixed number of fixed point iterations, using the solution by the explicit method as starting
values for the iterations.
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Example 6.8. We may construct a PC method from a second order Adams-Bashforth scheme
and the trapezoidal rule as follows:
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Such schemes are commonly referred as P(EC)mE schemes.

The predictor and the corrector is often by the same order, in which case only one or two
iterations are needed.

Error estimation in predictor-corrector methods.

The local discretization error of some LMM is given by
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Assume that we have chosen a predictor-corrector pair, using methods of the same order p.
Then
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From this we get the following local error estimate for the corrector, called Milne’s device:
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Example 6.9. Consider the PC-scheme of Example 6.8. In this case
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Apply the scheme to the linear test problem
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After 1-2 iterations, the iteration error is much smaller than the local error, and we also
observe that Milne’s device gives a reasonable approximation to the error.

Remark Predictor-corrector methods are not suited for stiff problems. You can see this
by e.g. using the trapezoidal rule on y

0 = �y. The trapezoidal rule has excellent stability
properties. But the iteration scheme
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will only converge if |h�/2| < 1.

For stiff system, the Backward differentiation formulas (BDF) is to be preferred. Those are
derived in exercise 5.
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