6.4 Adams-Bashforth-Moulton methods

The most famous linear multistep methods are constructed by the means of interpolation. For instance by the following strategy:

The solution of the ODE satisfy the integral equation

$$
\begin{equation*}
y\left(t_{n+1}\right)-y\left(t_{n}\right)=\int_{t_{n}}^{t_{n+1}} f(t, y(t)) d t \tag{48}
\end{equation*}
$$

Assume that we have found $f_{i}=f\left(t_{i}, y_{i}\right)$ for $i=n-k+1, \cdots, n$, with $t_{i}=t_{0}+i h$. Construct the polynomial of degree $k-1$, satisfying

$$
p_{k-1}\left(t_{i}\right)=f\left(t_{i}, y_{i}\right), \quad i=n-k+1, \ldots, n
$$

The interpolation points are equidistributed (constant stepsize), so Newton's backward difference formula can be used in this case (see Exercise 2), that is

$$
p_{k-1}(t)=p_{k-1}\left(t_{n}+s h\right)=f_{n}+\sum_{j=1}^{k-1}(-1)^{j}\binom{-s}{j} \nabla^{j} f_{n}
$$

where

$$
(-1)^{j}\binom{-s}{j}=\frac{s(s+1) \cdots(s+j-1)}{j!}
$$

and

$$
\nabla^{0} f_{n}=f_{n}, \quad \nabla^{j} f_{n}=\nabla^{j-1} f_{n}-\nabla^{j-1} f_{n-1}
$$

Using $y_{n+1} \approx y\left(t_{n+1}\right) . y_{n} \approx y\left(t_{n}\right)$ and $p_{k-1}(t) \approx f(t, y(t))$ in (48) gives

$$
\begin{align*}
y_{n+1}-y_{n} & \int_{t_{n}}^{t_{n+1}} p_{k-1}(t) d t=h \int_{0}^{1} p_{k-1}\left(t_{n}+s h\right) d s \\
& =h f_{n}+h \sum_{j=1}^{k-1}\left((-1)^{j} \int_{0}^{1}\binom{-s}{1} d s\right) \nabla^{j} f_{n} . \tag{49}
\end{align*}
$$

This gives the Adams-Bashforth methods

$$
y_{n+1}-y_{n}=h \sum_{j=0}^{k-1} \gamma_{j} \nabla^{j} f_{n}, \quad \gamma_{0}=1, \quad \gamma_{j}=(-1)^{j} \int_{0}^{1}\binom{-s}{j} d s
$$

Example 6.6. We get

$$
\gamma_{0}=1, \quad \gamma_{1}=\int_{0}^{1} s d s=\frac{1}{2}, \quad \gamma_{2}=\int_{0}^{1} \frac{s(s+1)}{2} d s=\frac{5}{12}
$$

and the first few methods becomes:

$$
\begin{aligned}
& y_{n+1}-y_{n}=h f_{n} \\
& y_{n+1}-y_{n}=h\left(\frac{3}{2} f_{n}-\frac{1}{2} f_{n-1}\right) \\
& y_{n+1}-y_{n}=h\left(\frac{23}{12} f_{n}-\frac{4}{3} f_{n-1}+\frac{5}{12} f_{n-1}\right)
\end{aligned}
$$

A k-step Adams-Bashforth method is explicit, has order k (which is the optimal order for explicit methods) and it is zero-stable. In addition, the error constant $C_{p+1}=\gamma_{k}$. Implicit Adams methods are constructed similarly, but in this case we include the (unknown) point $\left(t_{n+1}, f_{n+1}\right)$ into the set of interpolation points. So the polynomial

$$
p_{k}^{*}(t)=p_{k}^{*}\left(t_{n}+s h\right)=f_{n+1}+\sum_{j=1}^{k}(-1)^{j}\binom{-s+1}{j} \nabla^{j} f_{n+1}
$$

interpolates the points $\left(t_{i}, f_{i}\right), i=n-k+1, \ldots, n+1$. Using this, we get the Adams-Moulton methods

$$
y_{n+1}-y_{n}=h \sum_{j=0}^{k} \gamma_{j}^{*} \nabla^{j} f_{n+1}, \quad \gamma_{0}^{*}=1, \quad \gamma_{j}^{*}=(-1)^{j} \int_{0}^{1}\binom{-s+1}{j} d s
$$

Example 6.7. We get

$$
\gamma_{0}^{*}=1, \quad \gamma_{1}^{*}=\int_{0}^{1}(s-1) d s=-\frac{1}{2}, \quad \gamma_{2}^{*}=\int_{0}^{1} \frac{(s-1) s}{2} d s=-\frac{1}{12}
$$

and the first methods becomes

$$
\begin{array}{rlrl}
y_{n+1}-y_{n} & =h f_{n+1} & & \text { (Backward Euler) } \\
y_{n+1}-y_{n} & =h\left(\frac{1}{2} f_{n+1}+\frac{1}{2} f_{n}\right) & & \text { (Trapezoidal method) } \\
y_{n+1}-y_{n} & =h\left(\frac{5}{12} f_{n+1}+\frac{2}{3} f_{n}-\frac{1}{12} f_{n-1}\right) . &
\end{array}
$$

A k-step Adams-Moulton method is implicit, of order $k+1$ and is zero-stable. The error constant $C_{p+1}=\gamma_{k+1}^{*}$. Despite the fact that the Adams-Moulton methods are implicit, they have some advantages compared to their explicit counterparts: They are of one order higher, the error constants are much smaller, and the linear stability properties (when the methods are applied to the linear test problem $y^{\prime}=\lambda y$) are much better.

k	0	1	2	3	4	5	6
γ_{k}	1	$\frac{1}{2}$	$\frac{5}{12}$	$\frac{3}{8}$	$\frac{251}{720}$	$\frac{95}{288}$	$\frac{19087}{60480}$
γ_{k}^{*}	1	$-\frac{1}{2}$	$-\frac{1}{12}$	$-\frac{1}{24}$	$-\frac{19}{720}$	$-\frac{3}{160}$	$-\frac{863}{60480}$

Table 1: The γ 's for the Adams methods.

6.5 Predictor-corrector methods

A predictor-corrector (PC) pair is a pair of one explicit (predictor) and one implicit (corrector) methods. The nonlinear equations from the application of the implicit method are solved by a fixed number of fixed point iterations, using the solution by the explicit method as starting values for the iterations.

Example 6.8. We may construct a PC method from a second order Adams-Bashforth scheme and the trapezoidal rule as follows:

$$
\begin{array}{rlrl}
y_{n+1}^{[0]} & =y_{n}+\frac{h}{2}\left(3 f_{n}-f_{n-1}\right) & & (P: \text { Predictor }) \\
\text { for } l & =0,1, \ldots, m & & (E: \text { Evaluation }) \\
\quad f_{n+1}^{[l]}=f\left(t_{n+1}, y_{n+1}^{[l]}\right) & & (C: \text { Corrector }) \\
& y_{n+1}^{[l+1]}=y_{n}+\frac{h}{2}\left(f_{n+1}^{[l]}+f_{n}\right) & & \\
\text { end } & & \\
y_{n+1} & =y_{n+1}^{[m]} & & \\
f_{n+1} & =f\left(t_{n+1}, y_{n+1}\right) . & \text { Evaluation })
\end{array}
$$

Such schemes are commonly referred as $P(E C)^{m} E$ schemes.

The predictor and the corrector is often by the same order, in which case only one or two iterations are needed.

Error estimation in predictor-corrector methods.

The local discretization error of some LMM is given by

$$
h \tau_{n+1}=\sum_{l=0}^{k}\left(\alpha_{l} y\left(t_{n-k+1+l}-h \beta_{l} y^{\prime}\left(t_{n-k+1+l}\right)\right)=h^{p+1} C_{p+1} y^{(p+1)}\left(t_{n-k+1}\right)+\mathcal{O}\left(h^{p+2}\right)\right.
$$

But we can do the Taylor expansions of y and y^{\prime} around t_{n} rather than t_{n-k+1}. This will not alter the principal error term, but the terms hidden in the expression $\mathcal{O}\left(h^{p+2}\right)$ will change. As a consequence, we get

$$
h \tau_{n+1}=h^{p+1} C_{p+1} y^{(p+1)}\left(t_{n}\right)+\mathcal{O}\left(h^{p+2}\right)
$$

Assume that $y_{i}=y\left(t_{i}\right)$ for $i=n-k+1, \ldots, n$, and $\alpha_{k}=1$. Then

$$
h \tau_{n+1}=y\left(t_{n+1}\right)-y_{n+1}+\mathcal{O}\left(h^{p+2}\right)=h^{p+1} C_{p+1} y^{(p+1)}\left(t_{n}\right)+\mathcal{O}\left(h^{p+2}\right)
$$

Assume that we have chosen a predictor-corrector pair, using methods of the same order p. Then

$$
\begin{align*}
& y\left(t_{n+1}\right)-y_{n+1}^{[0]} \approx h^{p+1} C_{p+1}^{[0]} y^{(p+1)}\left(t_{n}\right) \tag{P}\\
& y\left(t_{n+1}\right)-y_{n+1} \approx h^{p+1} C_{p+1} y^{(p+1)}\left(t_{n}\right) \tag{C}
\end{align*}
$$

and

$$
y_{n+1}-y_{n+1}^{[0]} \approx h^{p+1}\left(C_{p+1}^{[0]}-C_{p+1}\right) y^{(p+1)}\left(t_{n}\right)
$$

From this we get the following local error estimate for the corrector, called Milne's device:

$$
y\left(t_{n+1}\right)-y_{n+1} \approx \frac{C_{p+1}}{C_{p+1]}^{[0]}-C_{p+1}}\left(y_{n+1}-y_{n+1}^{[0]}\right)
$$

Example 6.9. Consider the PC-scheme of Example 6.8. In this case

$$
C_{p+1}^{[0]}=\frac{5}{12}, \quad C_{p+1}=-\frac{1}{12}, \quad \text { so } \quad \frac{C_{p+1}}{C_{p+1]}^{[0]}-C_{p+1}}=-\frac{1}{6}
$$

Apply the scheme to the linear test problem

$$
y^{\prime}=-y, \quad y(0)=1
$$

using $y_{0}=1, y_{1}=e^{-h}$ and $h=0.1$. One step of the PC-method gives

l	$y_{2}^{[l]}$	$\left\|y_{2}-y_{2}^{[l]}\right\|$	$\left\|y(0.2)-y_{2}^{[l]}\right\|$	$\frac{1}{6}\left\|y_{2}^{[l]}-y_{2}^{[0]}\right\|$
0	0.819112	$4.49 \cdot 10^{-4}$	$3.81 \cdot 10^{-4}$	
1	0.818640	$2.25 \cdot 10^{-5}$	$9.08 \cdot 10^{-5}$	$7.86 \cdot 10^{-5}$
2	0.818664	$1.12 \cdot 10^{-6}$	$6.72 \cdot 10^{-5}$	$7.47 \cdot 10^{-5}$
3	0.818662	$5.62 \cdot 10^{-8}$	$6.84 \cdot 10^{-5}$	$7.49 \cdot 10^{-5}$

After 1-2 iterations, the iteration error is much smaller than the local error, and we also observe that Milne's device gives a reasonable approximation to the error.

Remark Predictor-corrector methods are not suited for stiff problems. You can see this by e.g. using the trapezoidal rule on $y^{\prime}=\lambda y$. The trapezoidal rule has excellent stability properties. But the iteration scheme

$$
y_{n+1}^{[l+1]}=y_{n}+\frac{h}{2} \lambda\left(y_{n+1}^{[l]}+y_{n}\right)
$$

will only converge if $|h \lambda / 2|<1$.
For stiff system, the Backward differentiation formulas (BDF) is to be preferred. Those are derived in exercise 5.

References

[1] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations. I, volume 8 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second revised edition edition, 1993. Nonstiff problems.
[2] E. Hairer and G. Wanner. Solving ordinary differential equations. II, volume 14 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2010. Stiff and differentialalgebraic problems, Second revised edition.

