1.2 Error propagation

When solving problems (mathematical models) on computers, there are at least three sources of errors:

- Data errors: For example, input data (constants and parameters) are given from physical measurements, and are therefore subject to measurement errors.
- Rounding errors: Only a finite set of numbers can be represented in a computer, and each step in a sequence of operations produces a rounding error.
- Approximation errors: An approximation to the solution of the problem is usually found by some numerical method.
If x is the exact value, the approximated value is given by

$$
\tilde{x}=x+\Delta x=x(1+\delta x)
$$

where Δx is the absolute error and $\delta x=\Delta x / x$ the relative error.
We will now see how errors in input data, represented by $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in D \in \mathbb{R}^{m}$ propagates in the model given by

$$
y=\varphi(x), \quad \varphi: D \rightarrow \mathbb{R},
$$

where y is the output of the model. We will assume φ to be sufficiently differentiable. Given errors in the input data x_{i}, we get

$$
y+\Delta y=\varphi\left(x_{1}+\Delta x_{1}, \ldots, x_{m}+\Delta x_{m}\right)=\varphi(x)+\sum_{i=1}^{m} \frac{\partial \varphi}{\partial x_{i}} \Delta x_{i}
$$

Here quadratic terms are ignored. Thus, the absolute error in y is given by

$$
\Delta y=\sum_{i=1}^{m} \frac{\partial \varphi}{\partial x_{i}} \Delta x_{i}
$$

and the relative error

$$
\delta y=\frac{\Delta y}{y}=\sum_{i=1}^{m} \frac{\partial \varphi}{\partial x_{i}} \frac{x_{i}}{\varphi} \delta x_{i} .
$$

From the triangle inequality, we get

$$
|\delta y| \leq \sum_{i=1}^{m}\left|\frac{\partial \varphi}{\partial x_{i}} \frac{x_{i}}{\varphi}\right|\left|\delta x_{i}\right|
$$

The expression $\left|\frac{\partial \varphi}{\partial x_{i}} \frac{x_{i}}{\varphi}\right|$ is thus the factor of which the error in x_{i} is amplified or damped, and is often referred to as the condition numbers of the problem. If the condition number is $\gg 1$ the problem is ill-conditioned, otherwise it is well-conditioned. If the number is >1, the error is amplified, so if φ is a part of a process and will be repeated several times, the complete process will be unstable.
From this, the error propagation of some common operations can be derived:

φ	Absolute error	Relative error
$y=x_{1}+x_{2}$,	$\Delta y=\Delta x_{1}+\Delta x_{2}$,	$\delta y=\frac{x_{1}}{x_{1}+x_{2}} \delta x_{1}+\frac{x_{2}}{x_{1}+x_{2}} \delta x_{2}$
$y=x_{1} x_{2}$,	$\Delta y=x_{2} \Delta x_{1}+x_{1} \Delta x_{2}$,	$\delta y=\delta x_{1}+\delta x_{2}$,
$y=\frac{x_{1}}{x_{2}}$,	$\Delta y=\frac{1}{x_{2}} \Delta x_{1}+\frac{x_{1}}{x_{2}^{2}} \Delta x_{2}$,	$\delta y=\delta x_{1}-\delta x_{2}$,
$y=\sqrt{x}$,	$\Delta y=\frac{1}{2 \sqrt{x}} \Delta x$	$\delta y=\frac{1}{2} \delta x$.

With respect to the relative errors in y, we observe that addition is ill-conditioned if $x_{1} \approx-x_{2}$, thus subtraction of two almost equal numbers should be avoided. All other operations in this table are well-conditioned. With respect to the absolute error, division with x_{2} small compared to x_{1} will amplify the errors, so will taking the square root of small numbers.

Example 1.1. Given the quadratic equation

$$
x^{2}+p x+q=0, \quad p>0
$$

with solutions $x=\left(-p \pm \sqrt{p^{2}-4 q}\right) / 2$. Let us consider the computation of one of the roots,

$$
x_{1}=\varphi(a, b)=\frac{-p+\sqrt{p^{2}-4 q}}{2}
$$

The relative error in x_{1} is

$$
\delta x_{1}=-\frac{p}{\sqrt{p^{2}-4 q}} \delta q+\frac{p+\sqrt{p^{2}-4 q}}{2 \sqrt{p^{2}-4 q}} \delta q
$$

If $p>0$ and $q<0$ then the condition numbers satisfy

$$
\left|-\frac{p}{\sqrt{p^{2}-4 q}}\right|<1 \quad \text { and } \quad\left|\frac{p+\sqrt{p^{2}-4 q}}{2 \sqrt{p^{2}-4 q}}\right|<1
$$

In this case, the problem is really well-conditioned. But if $p^{2} \approx 4 q$ the condition numbers can be large and the problem ill-conditioned. These conclusions also hold for the second root (check it yourself).
What about the practical computations. Let us assume the well-conditioned case, $p>0$ and $q<0$. In the computer, the following computations will be performed to compute the two roots:

$$
\begin{aligned}
r & =p^{2} & \\
s & =r-4 q & \\
t & =\sqrt{s} & \\
u_{1} & =-p+t & u_{2}=-p-t \\
x_{1} & =u_{1} / 2 & x_{2}=u_{2} / 2
\end{aligned}
$$

According to the discussion above, all operations are harmless, except for possibly the computation of u_{1}. If $p^{2} \gg-4 q$ then $p \approx t$ and we have subtraction of two almost equal numbers. We can illustrate this numerically by an example: Let $p=1.2$ and $q=-1.4 \cdot 10^{-8}$. The roots \tilde{x}_{i} are found by the straightforward operation in matlab $\mathrm{x} 1=\left(-\mathrm{p}+\mathrm{sqrt}\left(\mathrm{p}^{\wedge} 2-4 * \mathrm{q}\right)\right) / 2$ and similar for x_{2}. The result, together with the exact values of the roots are

$$
\begin{array}{lll}
x_{1}=1.166666655324074 \ldots \cdot 10^{-8}, & \tilde{x}_{1}=1.166666652174797 \cdot 10^{-8}, & \left|\delta x_{1}\right|=2.7 \cdot 10^{-9}, \\
x_{2}=-1.200000011666666 \ldots, & \tilde{x}_{2}=-1.200000011666666, & \left|\delta x_{2}\right| \sim \varepsilon,
\end{array}
$$

where $\varepsilon=2.2 \cdot 10^{-16}$ is the machine precision. The error in x_{1} may still seem small, but it has in fact been amplified by a factor of approximately 10^{7}. In this case, there is a simple remedy. Noticing that $x_{1} x_{2}=q$ makes it possible to compute $x_{1}=q / x_{2}$, which is a well conditioned operation. In fact, we get

$$
\tilde{x}_{1}=1.166666655324074 \cdot 10^{-8}, \quad\left|\delta x_{1}\right| \sim \varepsilon
$$

To sum up:

- Condition numbers tell how much an error in input data can be amplified by the model.
- Rounding errors may cause mayhem even in well behaved-problems. Sometimes, but not always, the problem can be solved by rearranging the computations.
- Avoid subtraction of two almost equal numbers.

