
1.2 Error propagation

When solving problems (mathematical models) on computers, there are at least three sources
of errors:
• Data errors: For example, input data (constants and parameters) are given from physical

measurements, and are therefore subject to measurement errors.
• Rounding errors: Only a finite set of numbers can be represented in a computer, and

each step in a sequence of operations produces a rounding error.
• Approximation errors: An approximation to the solution of the problem is usually found

by some numerical method.
If x is the exact value, the approximated value is given by

x̃ = x+ ∆x = x(1 + δx)

where ∆x is the absolute error and δx = ∆x/x the relative error.
We will now see how errors in input data, represented by x = (x1, x2, . . . , xm) ∈ D ∈ Rm

propagates in the model given by

y = ϕ(x), ϕ : D → R,

where y is the output of the model. We will assume ϕ to be sufficiently differentiable. Given
errors in the input data xi, we get

y + ∆y = ϕ(x1 + ∆x1, . . . , xm + ∆xm) = ϕ(x) +
m∑
i=1

∂ϕ

∂xi
∆xi

Here quadratic terms are ignored. Thus, the absolute error in y is given by

∆y =

m∑
i=1

∂ϕ

∂xi
∆xi

and the relative error

δy =
∆y

y
=

m∑
i=1

∂ϕ

∂xi

xi
ϕ
δxi.

From the triangle inequality, we get

|δy| ≤
m∑
i=1

∣∣ ∂ϕ
∂xi

xi
ϕ

∣∣ |δxi|.
The expression

∣∣ ∂ϕ
∂xi

xi
ϕ

∣∣ is thus the factor of which the error in xi is amplified or damped, and
is often referred to as the condition numbers of the problem. If the condition number is � 1
the problem is ill-conditioned, otherwise it is well-conditioned. If the number is > 1, the error
is amplified, so if ϕ is a part of a process and will be repeated several times, the complete
process will be unstable.
From this, the error propagation of some common operations can be derived:

4

ϕ Absolute error Relative error

y = x1 + x2, ∆y = ∆x1 + ∆x2, δy =
x1

x1 + x2
δx1 +

x2
x1 + x2

δx2

y = x1x2, ∆y = x2∆x1 + x1∆x2, δy = δx1 + δx2,

y =
x1
x2
, ∆y =

1

x2
∆x1 +

x1
x22

∆x2, δy = δx1 − δx2,

y =
√
x, ∆y =

1

2
√
x

∆x δy = 1
2δx.

With respect to the relative errors in y, we observe that addition is ill-conditioned if x1 ≈ −x2,
thus subtraction of two almost equal numbers should be avoided. All other operations in this
table are well-conditioned. With respect to the absolute error, division with x2 small compared
to x1 will amplify the errors, so will taking the square root of small numbers.

Example 1.1. Given the quadratic equation

x2 + px+ q = 0, p > 0

with solutions x = (−p±
√
p2 − 4q)/2. Let us consider the computation of one of the roots,

x1 = ϕ(a, b) =
−p+

√
p2 − 4q

2
.

The relative error in x1 is

δx1 = − p√
p2 − 4q

δq +
p+

√
p2 − 4q

2
√
p2 − 4q

δq.

If p > 0 and q < 0 then the condition numbers satisfy∣∣∣∣∣− p√
p2 − 4q

∣∣∣∣∣ < 1 and

∣∣∣∣∣p+
√
p2 − 4q

2
√
p2 − 4q

∣∣∣∣∣ < 1.

In this case, the problem is really well-conditioned. But if p2 ≈ 4q the condition numbers can
be large and the problem ill-conditioned. These conclusions also hold for the second root (check
it yourself).
What about the practical computations. Let us assume the well-conditioned case, p > 0 and
q < 0. In the computer, the following computations will be performed to compute the two roots:

r = p2

s = r − 4q

t =
√
s

u1 = −p+ t u2 = −p− t
x1 = u1/2 x2 = u2/2

5

According to the discussion above, all operations are harmless, except for possibly the compu-
tation of u1. If p2 � −4q then p ≈ t and we have subtraction of two almost equal numbers.
We can illustrate this numerically by an example: Let p = 1.2 and q = −1.4 · 10−8. The
roots x̃i are found by the straightforward operation in matlab x1 = (-p+sqrt(p^2-4*q))/2
and similar for x2. The result, together with the exact values of the roots are

x1 = 1.166666655324074 . . . · 10−8, x̃1 = 1.166666652174797 · 10−8, |δx1| = 2.7 · 10−9,

x2 = −1.200000011666666 . . . , x̃2 = −1.200000011666666, |δx2| ∼ ε,

where ε = 2.2 ·10−16 is the machine precision. The error in x1 may still seem small, but it has
in fact been amplified by a factor of approximately 107. In this case, there is a simple remedy.
Noticing that x1x2 = q makes it possible to compute x1 = q/x2, which is a well conditioned
operation. In fact, we get

x̃1 = 1.166666655324074 · 10−8, |δx1| ∼ ε.

To sum up:
• Condition numbers tell how much an error in input data can be amplified by the model.
• Rounding errors may cause mayhem even in well behaved-problems. Sometimes, but

not always, the problem can be solved by rearranging the computations.
• Avoid subtraction of two almost equal numbers.

6

