
3 Extrapolation methods

The idea of the extrapolation methods is as follows: If it is possible to express the error of
some numerical approximation as a power series of some parameter (typically a stepsize h),
this information can be used to systematically cancel the lowest order error terms, and thereby
obtain a higher order approximation.
Let us start with an example:

Example 3.1. Consider the central difference formula for approximating the derivative of a
function f at some point x0,

f(x0 + h)− f(x0 − h)

2h
≈ f ′(x0).

By Taylor expansion of f(x0 + h) and f(x0 − h) around x0 the the error can be expressed as
a power series in h:

f(x0 + h)− f(x0 − h)

2h
=

1

2h

∞∑
p=0

(1− (−1)p)
hp

p!
f (p)(x0) = f ′(x0) +

∞∑
k=1

h(2k)

(2k + 1)!
f (2k+1)(x0).

Assume we want to compute some quantity Q with some algorithm F (h) where h is a method
dependent parameter. Further, assume that we have an error expansion given by

F (h) = Q+ C1h
2 + C2h

4 + C3h
6 + · · · = Q+

∞∑
k=1

Ckh
2k. (7)

in which the constants Ck depends on the problem, but not on h. In the example above

F (h) =
f(x0 + h)− f(x0 − h)

2h
, Q = f ′(x0) and Ck =

f (2k+1)(x0)

(2k + 1)!
. (8)

The idea is to compute F (h) for different values of h, and use this information to systematic
eliminate the error terms, and thereby obtain a higher order methods. We can use half the
stepsize to get

F
(
h
2

)
= Q+ C1

(
h
2

)2
+ C2

(
h
2

)4
+ C3

(
h
2

)6
+ · · · (9)

By subtracting (7) from 4 times this equation, and divide the whole thing by 3 we get

4F
(
h
2

)
− F (h)

3
= Q+ C1

2h
4 + C1

3h
6 + · · ·

where C1
k = (4−k+1 − 1)/3 · Ck. This can be done more general: Assume

Tj−1,k = Q+Dkh
2k +Dk+1h

2(k+1) +Dk+2h
2(k+2) + · · ·

Tj,k = Q+Dk

(
h
2

)2k
+Dk+1

(
h
2

)2(k+1)
+Dk+2

(
h
2

)2(k+2)
+ · · ·

for some constants Dk, independent of h. And by the same procedure as above, the h2k-term
can be elminated such that

Tj,k+1 =
4kTj,k − Tj−1,k

4k − 1
= Q+D1

k+1h
2(k+1) +D1

k+2h
2(k+2) + · · · . (10)
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This gives a systematic way of constructing higher order schemes from a lower order one,

Tj,1 = F

(
h

2j−1

)
, j = 1, 2, . . . (11a)

Tj,k+1 =
4kTj,k − Tj−1,k

4k − 1
, k = 1, 2, . . . , j − 1. (11b)

resulting in a table
F (h) = T1,1

F (h/2) = T2,1 T2,2

F (h/4) = T3,1 T3,2 T3,3

F (h/8) = T4,1 T4,2 T4,3 T4,4
...

...
...

...
. . .

Example 3.2. Let f(x) = sin(x) and use (7) and extrapolation to find an approximation to
f ′(x0) for x0 = 0.5. Starting with h = 0.1, the first four rows in the table will be

0.876120655431924
0.877216948194290 0.877582379115078
0.877491149896850 0.877582550464370 0.877582561887655
0.877559708356366 0.877582561176204 0.877582561890327 0.877582561890369

with errors Ei,i = Q− Ti,i:

E1,1 = 1.46 · 10−3, E2,2 = 1.83 · 10−7, E3,3 = 2.72 · 10−12, E4,4 = 3.55 · 10−15.
This has been computed by the matlab code extrapolation.m.

Other examples satisfying (7) and for which the algorithm (11) are applicable are:

• The trapezoidal rule for integrals
∫ b
a f(x)dx

T (h) = h

1

2
f(x0) +

N−1∑
j=1

f(xi) +
1

2
f(xN )


where h = (b− a)/n for some n, and xi = a+ ih, i = 0, · · · , n. This algorithm is better
known as Romberg integration.

• The solution of an ODE by the implicit midpoint rule from t0 to tend

k1 = f

(
tn +

h

2
, yn +

h

2
k1

)
, yn+1 = yn + hk1.

where F (h) = yN , the numerical solution at tend using the stepsize h = (tend − t0)/N ,
and Q = y(tend). For the extrapolation strategy to work in this case, the nonlinear
equations has to be solved sufficiently accurate.

The strategy proposed here can be modified to other situation where the error can be expressed
as power series of h, e.g. if

F (h) = Q+ C1h+ C2h
2 + C3h

3 + C4h
4 + . . .

It is also possible to use other sequences of stepsizes h.
But in all cases, the constants Ck depends on some derivatives of the underlying problem, so
it will only work if this problem is sufficiently differentiable.

9


