4 Solution of systems of nonlinear equations

Given a system of nonlinear equations

$$
\begin{equation*}
\mathbf{f}(\mathbf{x})=0, \quad \mathbf{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \tag{12}
\end{equation*}
$$

for which we assume that there is (at least) one solution xi. The idea is to rewrite this system into the form

$$
\begin{equation*}
\mathbf{x}=\mathbf{g}(\mathbf{x}), \quad \mathbf{g}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \tag{13}
\end{equation*}
$$

The solution ξ of (12) should satisfy $\xi=\mathbf{g}(\xi)$, and is thus called a fixed point of \mathbf{g}. The iteration schemes becomes: given an initial guess $\mathbf{x}^{(0)}$, the fixed point iterations becomes

$$
\begin{equation*}
\mathbf{x}^{(k+1)}=\mathbf{g}\left(\mathbf{x}^{(k)}\right), \quad k=1,2, \ldots \tag{14}
\end{equation*}
$$

The following questions arise:
(i) How to find a suitable function \mathbf{g} ?
(ii) Under what conditions will the sequence $\mathbf{x}^{(k)}$ converge to the fixed point ξ ?
(iii) How quickly will the sequence $\mathbf{x}^{(k)}$ converge?

Point (ii) can be answered by Banach fixed point theorem:
Theorem 4.1. Let $D \subseteq \mathbb{R}^{m}$ be a and closed set. If

$$
\begin{equation*}
\mathbf{g}(D) \subseteq D \tag{15a}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\mathbf{g}(\mathbf{y})-\mathbf{g}(\mathbf{v})\| \leq L\|\mathbf{y}-\mathbf{v}\|, \quad \text { with } L<1 \text { for all } \mathbf{y}, \mathbf{v} \in D \tag{15b}
\end{equation*}
$$

then G has a unique fixed point in D and the fixed point iterations (14) converges for all $\mathbf{x}^{(0)} \in D$. Further,

$$
\begin{equation*}
\left\|\mathbf{x}^{(k)}-\xi\right\| \leq \frac{L^{k}}{1-L}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\| . \tag{15c}
\end{equation*}
$$

Proof. The proof is based on the Cauchy Convergence theorem, saying that a sequence $\left\{\mathbf{x}^{(k)}\right\}_{k=0}^{\infty}$ converges to some ξ if and only if for every $\varepsilon>0$ there is an N such that

$$
\begin{equation*}
\left\|\mathbf{x}^{(l)}-\mathbf{x}^{(k)}\right\|<\varepsilon \quad \text { for all } \quad l, k>N . \tag{16}
\end{equation*}
$$

Assumption (15a) ensures $\mathbf{x}^{(k)} \in D$ as long as $\mathbf{x}^{(0)} \in D$. From (14) and (15b) we get:

$$
\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\right\|=\left\|\mathbf{g}\left(\mathbf{x}^{(k)}\right)-\mathbf{g}\left(\mathbf{x}^{(k-1)}\right)\right\| \leq L\left\|\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right\| \leq L^{k}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\| .
$$

We can write $\mathbf{x}^{(k+p)}-\mathbf{x}^{(k)}=\sum_{i=1}^{p}\left(\mathbf{x}^{(k+i)}-\mathbf{x}^{(k+i-1)}\right)$, thus

$$
\begin{aligned}
\left\|\mathbf{x}^{(k+p)}-\mathbf{x}^{(k)}\right\| & \leq \sum_{i=1}^{p}\left\|\mathbf{x}^{(k+i)}-\mathbf{x}^{(k+i-1)}\right\| \\
& =\left(L^{p-1}+L^{p-2}+\cdots+1\right)\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\right\| \leq \frac{L^{k}}{1-L}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\|,
\end{aligned}
$$

since $L<1$. For the same reason, the sequence satisfy (16), so the sequence converges to some $\xi \in D$. Since the inequality is true for all $p>0$ it is also true for ξ, proving (15c).
To prove that the fixed point is unique, let ξ and η be two different fixed points in D. Then

$$
\|\xi-\eta\|=\|\mathbf{g}(\xi)-\mathbf{g}(\eta)\|<\|\xi-\eta\|
$$

which is impossible.
For a given problem, it is not necessarily straightforward to justify the two assumptions of the theorem. But it is sufficient to find some L satisfying the condition $L<1$ in some norm to prove convergence.
Let $\mathbf{x}=\left[x_{1}, \ldots, x_{m}\right]^{T}$ and $\mathbf{g}(\mathbf{x})=\left[g_{1}(\mathbf{x}), \ldots, g_{m}(\mathbf{x})\right]^{T}$. Let $\mathbf{y}, \mathbf{v} \in D$, assume D to be convex, ${ }^{2}$ and let $\mathbf{x}(\theta)=\theta \mathbf{y}+(1-\theta) \mathbf{v}$ be the straight line between \mathbf{y} and \mathbf{v}. According to the mean value theorem for functions, for each g_{i} there exist at $\tilde{\theta}_{i}$ such that

$$
\begin{aligned}
g_{i}(\mathbf{y})-g_{i}(\mathbf{v}) & =g_{i}(\mathbf{x}(1))-g_{i}(\mathbf{x}(0))=\frac{d g_{i}}{d \theta}\left(\tilde{\theta}_{i}\right)(1-0), & & \tilde{\theta}_{i} \in(0,1) \\
& =\sum_{j=1}^{m} \frac{\partial g_{i}}{\partial x_{j}}\left(\tilde{\mathbf{x}}_{i}\right)\left(y_{j}-v_{j}\right), & & \tilde{\mathbf{x}}_{i}=\tilde{\theta}_{i} \mathbf{y}+\left(1-\tilde{\theta}_{i}\right) \mathbf{v}
\end{aligned}
$$

since $d x_{j}(\theta) / d \theta=y_{j}-v_{j}$. Then

$$
\left|g_{i}(\mathbf{y})-g_{i}(\mathbf{v})\right| \leq \sum_{j=1}^{m}\left|\frac{\partial g_{i}}{\partial x_{j}}\left(\tilde{\mathbf{x}}_{i}\right)\right| \cdot\left|y_{j}-v_{j}\right| \leq\left(\sum_{j=1}^{m}\left|\frac{\partial g_{i}}{\partial x_{j}}\left(\tilde{\mathbf{x}}_{i}\right)\right|\right) \max _{l}\left|y_{l}-v_{l}\right| .
$$

If we let $\bar{g}_{i j}$ be some upper bound for each of the partial derivatives, that is

$$
\left|\frac{\partial g_{i}}{\partial x_{j}}(\mathbf{x})\right| \leq \bar{g}_{i j}, \quad \text { for all } \mathbf{x} \in D
$$

then

$$
\|\mathbf{g}(\mathbf{y})-\mathbf{g}(\mathbf{v})\|_{\infty}=\left(\max _{i} \sum_{j=1}^{m} \bar{g}_{i j}\right)\|\mathbf{y}-\mathbf{v}\|_{\infty} .
$$

We can then conclude that (15b) is satisfied if

$$
\max _{i} \sum_{j=1}^{m} \bar{g}_{i j}<1 .
$$

Newton's method

Newton's method is a fixed point iterations for which

$$
\begin{equation*}
\mathbf{g}\left(\mathbf{x}^{(k)}\right)=\mathbf{x}^{(k)}-J_{f}\left(\mathbf{x}^{(k)}\right)^{-1} \mathbf{f}\left(\mathbf{x}^{(k)}\right), \tag{17}
\end{equation*}
$$

[^0]where the Jacobian is the matrix function
\[

J_{f}(\mathbf{x})=\left($$
\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial f_{1}}{\partial x_{m}}(\mathbf{x}) \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial f_{m}}{\partial x_{m}}(\mathbf{x})
\end{array}
$$\right)
\]

The Newton method can be derived as follow: Consider element i in \mathbf{f}, that is $f_{i}(\mathbf{x})$. Do a multidimensional Taylor expansion of $f_{i}(\xi)$ around the vector $\mathbf{x}^{(k)}$, using $\mathbf{e}^{(k)}=\xi-\mathbf{x}^{(k)}$ This gives

$$
0=f_{i}\left(x_{1}^{(k)}+e_{1}^{(k)}, \ldots, x_{m}^{(k)}+e_{m}^{(k)}\right)=f_{i}+\frac{\partial f_{i}}{\partial x_{1}} e_{1}^{(k)}+\cdots+\frac{\partial f_{i}}{\partial x_{m}} e_{m}^{(k)}+R_{i}
$$

The function and all the derivatives are evaluated in $\mathbf{x}^{(k)}$. The remainder term R_{i} consists of quadratic terms like $\mathcal{O}\left(e_{i}^{(k)} e_{j}^{(k)}\right)$. If the error is small, this term is even smaller, so let us now ignore it and replace the errors $e_{i}^{(k)}$ with an approximation to the error $\Delta x_{i}^{(k)}$ to compensate. Doing so for each $i=1,2, \ldots, m$ gives us the following system of linear equations,

$$
f_{i}+\frac{\partial f_{i}}{\partial x_{1}} \Delta x_{1}^{(k)}+\cdots+\frac{\partial f_{i}}{\partial x_{m}} \Delta x_{m}^{(k)}=0, \quad i=1,2, \ldots, m .
$$

which is

$$
\mathbf{f}\left(\mathbf{x}^{(k)}\right)+J_{f}\left(\mathbf{x}^{(k)}\right) \cdot \Delta x^{(k)}=\mathbf{0} .
$$

Solve this with repect to $\Delta \mathbf{x}^{(k)}$. Remember that $\Delta \mathbf{x}^{(k)} \approx \xi-\mathbf{x}_{k}^{(k)}$ it seems reasonable to update our iterate with this amount, thus

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\Delta x_{k}^{(k)}
$$

which finally results in (17).
It is possible to prove, e.g. [1, Sec. 7.1] that if i) (12) has a solution ξ, ii) $J_{f}(\mathbf{x})$ is nonsingular in some open neighbourhood around ξ and $i i i)$ the initial guess $\mathbf{x}^{(0)}$ is sufficiently close to ξ, the Newton iterations will converge to ξ and

$$
\left\|\xi-\mathbf{x}^{(k+1)}\right\| \leq K\left\|\xi-\mathbf{x}^{(k)}\right\|^{2}
$$

for some positive constant K. We say that the convergence is quadratic.

Steepest descent

Steepest descent is an algorithm that search for a (local) minimum of a given function ψ : $\mathbb{R}^{m} \rightarrow \mathbb{R}$. The idea is as follows.
a) Given some point $\mathbf{x} \in \mathbb{R}^{m}$.
b) Find the direction of steepest decline of ψ from \mathbf{x} (steepest descent direction)
c) Walk steady in this direction till ψ starts to increase again.
d) Repeat from a).

The direction of steepest descent is $-\nabla \psi(\mathbf{x})$, where the gradient $\nabla \psi$ is given by

$$
\nabla \psi(\mathbf{x})=\left[\frac{\partial \psi}{\partial x_{1}}(\mathbf{x}), \ldots, \frac{\partial \psi}{\partial x_{m}}(\mathbf{x})\right]^{T}
$$

And the steepest descent algorithm reads

```
function Steepest Descent \(\left(\psi, \mathbf{x}^{(0)}\right)\)
    for \(\mathrm{k}=0,1,2, \ldots\) do
        \(\mathbf{p}=-\nabla \psi\left(\mathbf{x}^{(k)}\right) /\left\|\nabla \psi\left(\mathbf{x}^{(k)}\right)\right\| \quad \triangleright\) The steepest descent direction.
        Minimize \(\psi\left(\mathbf{x}^{(k)}+\alpha \mathbf{p}\right)\), giving \(\alpha=\alpha^{\star}\).
        \(\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha^{\star} \mathbf{p}\)
    end for
end function
```

This algorithm will always converge to some point ξ in which $\nabla \psi(\xi)=0$, usually a local minimum, if one exist. But the convergence can be very slow.
This can be used to find solution of the nonlinear system of equations (12) by defining

$$
\psi(\mathbf{x})=\mathbf{f}(\mathbf{x})^{T} \mathbf{f}(\mathbf{x})=\|\mathbf{f}(\mathbf{x})\|_{2}^{2}
$$

Thus, ξ is a minimum of $\psi(\mathbf{x})$ if and only if ξ is a solution of $\mathbf{f}(\mathbf{x})=0$. In this case, we can show that

$$
\nabla \psi(\mathbf{x})=2 J_{f}(\mathbf{x})^{T} \mathbf{f}(\mathbf{x})
$$

References

[1] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical mathematics, volume 37 of Texts in Applied Mathematics. Springer-Verlag, Berlin, second edition, 2007.

[^0]: ${ }^{2} D$ is convex if $\theta y+(1-\theta) v \in D$ for all $y, v \in D$ and $\theta \in[0,1]$.

