4 Solution of systems of nonlinear equations

Given a system of nonlinear equations
f(x) =0, f:R™ — R™ (12)

for which we assume that there is (at least) one solution xi. The idea is to rewrite this system
into the form
x = g(x), g:R™ — R™. (13)

The solution £ of (12) should satisfy £ = g(§), and is thus called a fized point of g. The
iteration schemes becomes: given an initial guess x(©), the fized point iterations becomes

xkHD) — g(x®) k=12, (14)

The following questions arise:

(i) How to find a suitable function g?
(ii) Under what conditions will the sequence x(¥) converge to the fixed point £?
(iii) How quickly will the sequence x(*) converge?

Point (ii) can be answered by Banach fixed point theorem:

Theorem 4.1. Let D C R™ be a and closed set. If
gD)C D (15a)
and

lgly) —g(v)| < Llly —v|, with L < 1 for all y,v € D, (15b)

then G has a unique fized point in D and the fized point iterations (14) converges for all

x() € D. Further,
k

I =]l < = Ix = x]. (15¢)

Proof. The proof is based on the Cauchy Convergence theorem, saying that a sequence {x(k)}zoz0
converges to some ¢ if and only if for every € > 0 there is an N such that

[ — xR < ¢ for all [,k > N. (16)
Assumption (15a) ensures x*) € D as long as x(°) € D. From (14) and (15b) we get:
D — B = [|g(x®)) — g ") < Llx® —x*V|| < LF]x - xO.

We can write x(+P) — x(F) = 77 (x(k+1) _ x(k+i=1)) "thus
Hx(k—i—p) k)” < Z”X (kti) _ o (k+i- 1)”

k
= (LP P P2 1)”X(k+1) k)” < L Hx(l) (0)H7
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since L < 1. For the same reason, the sequence satisfy (16), so the sequence converges to
some £ € D. Since the inequality is true for all p > 0 it is also true for £, proving (15¢).

To prove that the fixed point is unique, let £ and 1 be two different fixed points in D. Then

1€ = nll = llg(&) — gl < lI§ —nll
which is impossible. O

For a given problem, it is not necessarily straightforward to justify the two assumptions of the
theorem. But it is sufficient to find some L satisfying the condition L. < 1 in some norm to

prove convergence.

Let x = [z1,...,2,]7 and g(x) = [g1(X), ..., gm(Xx)]T. Let y,v € D, assume D to be convex,?

and let x(0) = 0y + (1 — 0)v be the straight line between y and v. According to the mean
value theorem for functions, for each g; there exist at #; such that

D) - x(0) = W@ya -0, dieo)

9i(y) — gi(v) = gi(x
> o,

since dx;(6)/df = y; — vj. Then

—U]) 5(1' :6~iy+(1—9i)v

" 9g; ~,09i
l9:(¥) = gV < D15 Rl -y — vl < | D5 (%)l | max|y — .
g=1 "

If we let g;; be some upper bound for each of the partial derivatives, that is

0gi

|a$j

(x)| < gij, forallxeD.

then

m
lg(¥) — g(W)llee = | max > gij | [y = vloe-

Jj=1

We can then conclude that (15b) is satisfied if
m

mlale gij < 1.
j:

Newton’s method
Newton’s method is a fixed point iterations for which
g(x) = x® — 7p(x®) T (x W), (17)

2D is convex if 0y + (1 — 0)v € D for all y,v € D and 0 € [0, 1].
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where the Jacobian is the matrix function

g - g
Jr(x) = : :
o) - Yao

The Newton method can be derived as follow: Consider element ¢ in f, that is f;(x). Do a
multidimensional Taylor expansion of f;(£) around the vector x®) using e®) = ¢ — x(¥) This
gives

8fl (k +-- 4+ O e®) + R

0Ty ™

O_fz< +€gk),---ang) ) Ji+

The function and all the derivatives are evaluated in x*), The remainder term R; consists of
quadratic terms like O(egk)eyc)). If the error is small, this term is even smaller, so let us now

(k) (k)

ignore it and replace the errors e;’ with an approximation to the error Az;” to compensate.

Doing so for each i = 1,2,...,m gives us the following system of linear equations,
0 0
fi+ f’A(k f’Ax i=1,2,...,m.
Tm
which is

f(x®)) + Jp(x®) . Az®) = 0.

Solve this with repect to Ax(*). Remember that Ax*) ~ ¢ — x,(f) it seems reasonable to
update our iterate with this amount, thus

x(kF+D) = x (k) 4 Aa:;k)

which finally results in (17).

It is possible to prove, e.g. [1, Sec. 7.1| that if 7) (12) has a solution &, i) J¢(x) is nonsingular
in some open neighbourhood around £ and iii) the initial guess x() is sufficiently close to &,
the Newton iterations will converge to & and

€ = x+0) < K¢ - x®)?

for some positive constant K. We say that the convergence is quadratic.
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Steepest descent

Steepest descent is an algorithm that search for a (local) minimum of a given function ¢ :
R™ — R. The idea is as follows.

a) Given some point x € R™.

b) Find the direction of steepest decline of ¥ from x (steepest descent direction)
c) Walk steady in this direction till ¢ starts to increase again.

d) Repeat from a).

The direction of steepest descent is —V1(x), where the gradient Vi is given by

_ |

LI
_81'1 '

V¢(x) e oz, (X)

(%),

And the steepest descent algorithm reads

function STEEPEST DESCENT(1), x(©))
for k=0,1,2,.... do
p = —V(x®) /|| V(x| > The steepest descent direction.
Minimize 1 (x®) + ap), giving o = o*.
x*E+D) = x(*) 4 o*p
end for
end function

This algorithm will always converge to some point £ in which Vi (§) = 0, usually a local
minimum, if one exist. But the convergence can be very slow.

This can be used to find solution of the nonlinear system of equations (12) by defining

»(x) = £(x)Tf(x) = [£(x)]3-
Thus, £ is a minimum of ¥ (x) if and only if £ is a solution of f(x) = 0. In this case, we can

show that
Vi (x) = 2J5(x)T£(x).
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