Norms and inner products on \mathbb{R}^{m}

Let \mathbb{R}^{m} denote the set of all m-dimensional column vectors $x=\left[x_{1}, x_{2}, \ldots, x_{m}\right]^{T}$ with realnumber coefficients.

Definition 1.2. A vector norm on \mathbb{R}^{m} is a function $\|\cdot\|: \mathbb{R}^{m} \rightarrow \mathbb{R}$ satisfying

1. $\|x\| \geq 0$ and $\|x\|=0 \Leftrightarrow x=0$,
2. $\|\alpha x\|=|\alpha|\|x\|$,
3. $\|x+y\| \leq\|x\|+\|y\|$
for all $x, y \in \mathbb{R}^{m}$ and for all $\alpha \in \mathbb{R}$.
Some common examples of vector norms are:

$$
\begin{aligned}
\|x\|_{1} & =\sum_{i=1}^{m}\left|x_{i}\right| & \text { The } l_{1} \text {-norm } \\
\|x\|_{2} & =\sqrt{\sum_{i=1}^{m} x_{i}^{2}} & \text { The } l_{2} \text {-norm (or Euclidean norm) } \\
\|x\|_{\infty} & =\max _{1 \leq i \leq m}\left|x_{i}\right| & \text { The } l_{\infty} \text {-norm (or the max-norm) }
\end{aligned}
$$

Example 1.3. If $x=[1.3,-3.5,2.4]$ then $\|x\|_{1}=7.2,\|x\|_{2}=4.4385$ and $\|x\|_{\infty}=3.5$.
Two norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ on \mathbb{R}^{m} are equivalent, that means there exist two real constants c_{1} and c_{2} such that for all $x \in \mathbb{R}^{m}$ one has that

$$
c_{1}\|x\|_{a} \leq\|x\|_{b} \leq c_{2}\|x\|_{a}
$$

For the norms mentioned above, the following can be proved (do it!):

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{m}\|x\|_{2} \leq m\|x\|_{\infty}
$$

Definition 1.4. An inner product on \mathbb{R}^{m} is a function $\langle\cdot, \cdot\rangle: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ satisfying

1. $\langle x, y\rangle=\langle y, x\rangle$,
2. $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$,
3. $\langle x+z, y\rangle=\langle x, y\rangle+\langle z, x\rangle$,
4. $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Leftrightarrow x=0$
for all $x, y, z \in \mathbb{R}^{m}$ and $\alpha \in \mathbb{R}$.
The best known inner product on \mathbb{R}^{m} is

$$
\langle x, y\rangle=x^{T} y=\sum_{i=1}^{m} x_{i} y_{i}
$$

but there are others, as we will see later in the course.
Given an inner product, we can always define a norm by $\|x\|^{2}=\langle x, x\rangle$. Such norms satisfies the Cauchy-Schwarz inequality:

$$
|\langle x, y\rangle| \leq\|x\|\|y\|
$$

Two vectors x and y are orthogonal if $\langle x, y\rangle=0$.

