Norms and inner products on \mathbb{R}^m

Let \mathbb{R}^m denote the set of all *m*-dimensional column vectors $x = [x_1, x_2, \dots, x_m]^T$ with realnumber coefficients.

Definition 1.2. A vector norm on \mathbb{R}^m is a function $\|\cdot\|$: $\mathbb{R}^m \to \mathbb{R}$ satisfying

- 1. $||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$,
- 2. $\|\alpha x\| = |\alpha| \|x\|$,
- 3. $||x + y|| \le ||x|| + ||y||$

for all $x, y \in \mathbb{R}^m$ and for all $\alpha \in \mathbb{R}$.

Some common examples of vector norms are:

$$\|x\|_{1} = \sum_{i=1}^{m} |x_{i}|$$
 The l_{1} -norm
$$\|x\|_{2} = \sqrt{\sum_{i=1}^{m} x_{i}^{2}}$$
 The l_{2} -norm (or Euclidean norm)
$$\|x\|_{\infty} = \max_{1 \le i \le m} |x_{i}|$$
 The l_{∞} -norm (or the max-norm)

Example 1.3. If x = [1.3, -3.5, 2.4] then $||x||_1 = 7.2$, $||x||_2 = 4.4385$ and $||x||_{\infty} = 3.5$.

Two norms $\|\cdot\|_a$ and $\|\cdot\|_b$ on \mathbb{R}^m are *equivalent*, that means there exist two real constants c_1 and c_2 such that for all $x \in \mathbb{R}^m$ one has that

$$c_1 \|x\|_a \le \|x\|_b \le c_2 \|x\|_a.$$

For the norms mentioned above, the following can be proved (do it!):

$$\|x\|_{\infty} \le \|x\|_{2} \le \|x\|_{1} \le \sqrt{m} \|x\|_{2} \le m \|x\|_{\infty}.$$

Definition 1.4. An inner product on \mathbb{R}^m is a function $\langle \cdot, \cdot \rangle$: $\mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ satisfying

- 1. $\langle x, y \rangle = \langle y, x \rangle$,
- 2. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$,
- 3. $\langle x+z,y\rangle = \langle x,y\rangle + \langle z,x\rangle$,
- 4. $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

for all $x, y, z \in \mathbb{R}^m$ and $\alpha \in \mathbb{R}$.

The best known inner product on \mathbb{R}^m is

$$\langle x, y \rangle = x^T y = \sum_{i=1}^m x_i y_i,$$

but there are others, as we will see later in the course.

Given an inner product, we can always define a norm by $||x||^2 = \langle x, x \rangle$. Such norms satisfies the *Cauchy-Schwarz inequality*:

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Two vectors x and y are orthogonal if $\langle x, y \rangle = 0$.