
5 Cubic Splines

5.1 Introduction

Assume that we have a set of n+ 1 points {xi, yi}ni=0 and we want to find a curve interpola-

tiong these points. One possibility is of course to use polynomial interplation, that is, find a

polynomial pn 2 Pn so that

pn(xi) = yi, i = 0, 1, . . . , n.

This may be quite unsatisfactory, as the following picture demonstrate:
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In the picture to the left, polynomial interpolation have been used, to the right, cubic splines.

The idea of splines is to split the interval [a, b] by a = t0 < t1 < · · · < tn = b, and let

interpolating curve be a polynomial on each subinterval [ti�1, ti). The points ti, i = 0, 1, . . . , n
are called knots (skjøter på norsk), and they may or may not correspond to the interpolation

nodes xi. The piecewise polynomials are then glued together by some smoothness conditions.

More formally, the definition is:

Definition 5.1. On some interval [a, b] , suppose that n+1 points a = t0 < t1 < · · · < tn = b

has been specified. A spline of degree k is a function S satisfying

1. On each interval [ti�1, ti), S is a polynomial of degree k.

2. S 2 C

(k�1)[a, b].

We will write the spline by

S(x) =

8
>>>><

>>>>:

S0(x) x 2 [t0, t1)

S1(x) x 2 [t1, t2)
.

.

.

Sn�1(x) x 2 [tn�1, tn]

(18)

where Si 2 Pk.

Example 5.2. The linear spline interpolating the the points {ti,yi}ni=0 is given by

Si(x) = yi
x� ti+1

ti � ti+1
+ yi+1

x� ti

ti+1 � ti
, x 2 [ti, ti+1) i = 0, 1, . . . , n� 1, (19)

the straight lines between the points.
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5.2 Cubic splines

We will now construct an algorithm for finding the cubic splines, interpolating the points

{ti,yi}ni=0. It means that

Si(x) = aix
3 + bix

2 + cix+ di, x 2 [ti, ti+1) i = 0, 1, . . . , n� 1

which gives a total of 4n parameters to be determined. A cubic spline is two times continuous

differentiable, thus it has has to satisfy

Si(ti) = yi, Si(ti+1) = yi+1, i = 0, · · · , n� 1 (20)

S

0
i�1(ti) = S

0
i(ti), i = 1, 2, . . . , n� 1 (21)

S

00
i�1(ti) = S

00
i (ti), i = 1, 2, . . . , n� 1 (22)

a total of 4n� 2 conditions, leaving two free parameters. Some common choices for those are

• Natural cubic splines: S

00(t0) = S

00(tn) = 0.

• Clamped cubic splines: S

0(t0) and S

0(tn) are specified.

• Not-a-knot condition: S

000
0 (t1) = S

000
1 (t1) and S

000
n�2(tn�1) = S

000
n�1(tn).

• Periodic conditions: S

0
0(t0) = S

0
n�1(tn) and S

00
0 (t0) = S

00
n�1(tn).

We will now construct an efficient algorithm for solving finding the splines. The idea is as

follows: Since S is a cubic spline, S

00
is a linear spline. Let zi = S

00(ti), i = 0, 1, . . . , n (to be

found). Further, let hi = ti+1 � ti. Then, from 19 we have that

S

00
i (x) =

zi

hi
(ti+1 � x) +

zi+1

hi
(x� ti).

So, by this, (22) is satisfied. Integrating twice gives

Si(x) =
zi

6hi
(ti+1 � x)3 +

zi+1

6hi
(x� ti)

3 + Cix+Di.

The integration constants Ci and Di can be determined by (20), the result becomes

Si(x) =
zi

6hi
(ti+1�x)3+

zi+1

6hi
(x�ti)3+

✓
yi+1

hi
� zi+1hi

6

◆
(x�ti)+

✓
yi

hi
� zihi

6

◆
(ti+1�x), (23)

We now activate the second condition (21). Notice that

S

0
i(ti) = �

hi

3
zi �

hi

6
zi+1 �

yi

hi
+

yi+1

hi

and

S

00
i�1(ti) =

hi

6
zi�1 +

hi�1

3
zi �

yi�1

hi�1
+

yi

hi�1

so these conditions will simply become

hi�1zi�1 + 2(hi + hi�1)zi + hizi+1 =
6

hi
(yi+1 � yi)�

6

hi�1
(yi � yi�1), i = 1, · · · , n� 1.
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Let us now assume z0 = zn = 0, the natural spline condition. The whole system now becomes

a tridiagonal system of equations:

0

BBBBBBB@

u1 h1

h1 u2 h2

h2 u3 h3
.

.

.

.

.

.

.

.

.

hn�3 un�2 hn�2

hn�2 un�1

1

CCCCCCCA

0

BBBBBBB@

z1

z2

z3
.

.

.

zn�2

zn�1

1

CCCCCCCA

=

0

BBBBBBB@

v1

v2

v3
.

.

.

vn�2

vn�1

1

CCCCCCCA

with

hi = ti+1 � ti, ui = 2(hi + hi�1), bi =
6

hi
(yi+1 � yi), vi = bi � bi�1.

Notice that the matrix is diagonal dominant, so the system can be solved by some direct

methods for tridiagonal systems. The complete algorithm becomes:

Input: n, (ti, yi)ni=0
for i = 0, 1, . . . , n� 1 do . Set up the linear system

hi  ti+1 � ti

bi  6(yi+1 � yi)
end for

u1  2(h0 + h1) . The LU-factorization

v1  b1 � b0

for i = 2, 3, . . . , n� 1 do

ui  2(hi + hi�1)� h

2
i�1/ui�1

vi  bi � bi�1 � hi�1vi�1/ui�1

end for

zn  0 . Back substitution

for i = n� 1, n� 2, . . . , 1 do

zi = (vi � hizi+1)/ui
end for

z0  0.

For natural cubic splines, we do have the following result:

Theorem 5.3. Let f 2 C

2[a, b] . If S is the natural cubic spline interpolating f in the knots
a = t0 < t1 < · · · < tn = b then

Z b

a

�
S

00(x)
�2

dx 
Z b

a

�
f

00(x)
�2

dx.

Proof. Let g = f � S. Then

Z b

a

�
f

00(x)
�2

dx =

Z b

a

�
S

00(x)
�2

dx+

Z b

a

�
g

00(x)
�2

dx+ 2

Z b

a
g

00(x)S00(x)dx.
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The statement of the theorem is clearly true if we can prove that the last term is positive.

Notice that S

000
i is constant on each each interval [ti, ti+1), and let us call this constant ai. By

partial integration we get

Z b

a
S

00
g

00
dx =

n�1X

i=0

Z ti+1

ti

S

00
g

00
dx =

n�1X

i=0

⇢
(S00(ti+1)g

0(ti+1)� S

00(ti)g
0(ti)�

Z ti+1

ti

S

000
g

0
dx

�

= S

00(tn)g
0(tn)� S

00(t0)g
0(t0)�

n�1X

i=0

ci

Z ti+1

ti

g

0
dx =

n�1X

i=0

ci(g(ti+1)� g(ti)) = 0.

The curvature of a function f is defined as |f 00|/
⇣p

1 + (f 0)2
⌘3

. If we assume that |f 0| ⌧ 1

we are left with f

00
as a approximate measure for the curvature. In this sense, the natural

cubic spline is the smoothest possible function interpolating the given data.
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