5 Cubic Splines

5.1 Introduction

Assume that we have a set of $n+1$ points $\left\{x_{i}, y_{i}\right\}_{i=0}^{n}$ and we want to find a curve interpolationg these points. One possibility is of course to use polynomial interplation, that is, find a polynomial $p_{n} \in \mathbb{P}_{n}$ so that

$$
p_{n}\left(x_{i}\right)=y_{i}, \quad i=0,1, \ldots, n .
$$

This may be quite unsatisfactory, as the following picture demonstrate:

In the picture to the left, polynomial interpolation have been used, to the right, cubic splines. The idea of splines is to split the interval $[a, b]$ by $a=t_{0}<t_{1}<\cdots<t_{n}=b$, and let interpolating curve be a polynomial on each subinterval $\left[t_{i-1}, t_{i}\right)$. The points $t_{i}, i=0,1, \ldots, n$ are called knots (skjøter på norsk), and they may or may not correspond to the interpolation nodes x_{i}. The piecewise polynomials are then glued together by some smoothness conditions. More formally, the definition is:

Definition 5.1. On some interval $[a, b]$, suppose that $n+1$ points $a=t_{0}<t_{1}<\cdots<t_{n}=b$ has been specified. A spline of degree k is a function S satisfying

1. On each interval $\left[t_{i-1}, t_{i}\right), S$ is a polynomial of degree k.
2. $S \in C^{(k-1)}[a, b]$.

We will write the spline by

$$
S(x)= \begin{cases}S_{0}(x) & x \in\left[t_{0}, t_{1}\right) \tag{18}\\ S_{1}(x) & x \in\left[t_{1}, t_{2}\right) \\ \vdots & \\ S_{n-1}(x) & x \in\left[t_{n-1}, t_{n}\right]\end{cases}
$$

where $S_{i} \in \mathbb{P}_{k}$.
Example 5.2. The linear spline interpolating the the points $\left\{t_{i}, y_{i}\right\}_{i=0}^{n}$ is given by

$$
\begin{equation*}
S_{i}(x)=y_{i} \frac{x-t_{i+1}}{t_{i}-t_{i+1}}+y_{i+1} \frac{x-t_{i}}{t_{i+1}-t_{i}}, \quad x \in\left[t_{i}, t_{i+1}\right) \quad i=0,1, \ldots, n-1, \tag{19}
\end{equation*}
$$

the straight lines between the points.

5.2 Cubic splines

We will now construct an algorithm for finding the cubic splines, interpolating the points $\left\{t_{i}, y_{i}\right\}_{i=0}^{n}$. It means that

$$
S_{i}(x)=a_{i} x^{3}+b_{i} x^{2}+c_{i} x+d_{i}, \quad x \in\left[t_{i}, t_{i+1}\right) \quad i=0,1, \ldots, n-1
$$

which gives a total of $4 n$ parameters to be determined. A cubic spline is two times continuous differentiable, thus it has has to satisfy

$$
\begin{align*}
S_{i}\left(t_{i}\right) & =y_{i}, \quad S_{i}\left(t_{i+1}\right)=y_{i+1}, \quad i=0, \cdots, n-1 \tag{20}\\
S_{i-1}^{\prime}\left(t_{i}\right) & =S_{i}^{\prime}\left(t_{i}\right), \quad i=1,2, \ldots, n-1 \tag{21}\\
S_{i-1}^{\prime \prime}\left(t_{i}\right) & =S_{i}^{\prime \prime}\left(t_{i}\right), \quad i=1,2, \ldots, n-1 \tag{22}
\end{align*}
$$

a total of $4 n-2$ conditions, leaving two free parameters. Some common choices for those are

- Natural cubic splines: $S^{\prime \prime}\left(t_{0}\right)=S^{\prime \prime}\left(t_{n}\right)=0$.
- Clamped cubic splines: $S^{\prime}\left(t_{0}\right)$ and $S^{\prime}\left(t_{n}\right)$ are specified.
- Not-a-knot condition: $S_{0}^{\prime \prime \prime}\left(t_{1}\right)=S_{1}^{\prime \prime \prime}\left(t_{1}\right)$ and $S_{n-2}^{\prime \prime \prime}\left(t_{n-1}\right)=S_{n-1}^{\prime \prime \prime}\left(t_{n}\right)$.
- Periodic conditions: $S_{0}^{\prime}\left(t_{0}\right)=S_{n-1}^{\prime}\left(t_{n}\right)$ and $S_{0}^{\prime \prime}\left(t_{0}\right)=S_{n-1}^{\prime \prime}\left(t_{n}\right)$.

We will now construct an efficient algorithm for solving finding the splines. The idea is as follows: Since S is a cubic spline, $S^{\prime \prime}$ is a linear spline. Let $z_{i}=S^{\prime \prime}\left(t_{i}\right), i=0,1, \ldots, n$ (to be found). Further, let $h_{i}=t_{i+1}-t_{i}$. Then, from 19 we have that

$$
S_{i}^{\prime \prime}(x)=\frac{z_{i}}{h_{i}}\left(t_{i+1}-x\right)+\frac{z_{i+1}}{h_{i}}\left(x-t_{i}\right) .
$$

So, by this, (22) is satisfied. Integrating twice gives

$$
S_{i}(x)=\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-x\right)^{3}+\frac{z_{i+1}}{6 h_{i}}\left(x-t_{i}\right)^{3}+C_{i} x+D_{i} .
$$

The integration constants C_{i} and D_{i} can be determined by (20), the result becomes

$$
\begin{equation*}
S_{i}(x)=\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-x\right)^{3}+\frac{z_{i+1}}{6 h_{i}}\left(x-t_{i}\right)^{3}+\left(\frac{y_{i+1}}{h_{i}}-\frac{z_{i+1} h_{i}}{6}\right)\left(x-t_{i}\right)+\left(\frac{y_{i}}{h_{i}}-\frac{z_{i} h_{i}}{6}\right)\left(t_{i+1}-x\right), \tag{23}
\end{equation*}
$$

We now activate the second condition (21). Notice that

$$
S_{i}^{\prime}\left(t_{i}\right)=-\frac{h_{i}}{3} z_{i}-\frac{h_{i}}{6} z_{i+1}-\frac{y_{i}}{h_{i}}+\frac{y_{i+1}}{h_{i}}
$$

and

$$
S_{i-1}^{\prime \prime}\left(t_{i}\right)=\frac{h_{i}}{6} z_{i-1}+\frac{h_{i-1}}{3} z_{i}-\frac{y_{i-1}}{h_{i-1}}+\frac{y_{i}}{h_{i-1}}
$$

so these conditions will simply become

$$
h_{i-1} z_{i-1}+2\left(h_{i}+h_{i-1}\right) z_{i}+h_{i} z_{i+1}=\frac{6}{h_{i}}\left(y_{i+1}-y_{i}\right)-\frac{6}{h_{i-1}}\left(y_{i}-y_{i-1}\right), \quad i=1, \cdots, n-1 .
$$

Let us now assume $z_{0}=z_{n}=0$, the natural spline condition. The whole system now becomes a tridiagonal system of equations:

$$
\left(\begin{array}{cccccc}
u_{1} & h_{1} & & & & \\
h_{1} & u_{2} & h_{2} & & & \\
& h_{2} & u_{3} & h_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & h_{n-3} & u_{n-2} & h_{n-2} \\
& & & & h_{n-2} & u_{n-1}
\end{array}\right)\left(\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
\vdots \\
z_{n-2} \\
z_{n-1}
\end{array}\right)=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{n-2} \\
v_{n-1}
\end{array}\right)
$$

with

$$
h_{i}=t_{i+1}-t_{i}, \quad u_{i}=2\left(h_{i}+h_{i-1}\right), \quad b_{i}=\frac{6}{h_{i}}\left(y_{i+1}-y_{i}\right), \quad v_{i}=b_{i}-b_{i-1} .
$$

Notice that the matrix is diagonal dominant, so the system can be solved by some direct methods for tridiagonal systems. The complete algorithm becomes:

```
Input: \(n,\left(t_{i}, y_{i}\right)_{i=0}^{n}\)
    for \(i=0,1, \ldots, n-1\) do \(\quad \triangleright\) Set up the linear system
        \(h_{i} \leftarrow t_{i+1}-t_{i}\)
        \(b_{i} \leftarrow 6\left(y_{i+1}-y_{i}\right)\)
    end for
```

 \(u_{1} \leftarrow 2\left(h_{0}+h_{1}\right) \quad \triangleright\) The LU-factorization
 \(v_{1} \leftarrow b_{1}-b_{0}\)
 for \(i=2,3, \ldots, n-1\) do
 \(u_{i} \leftarrow 2\left(h_{i}+h_{i-1}\right)-h_{i-1}^{2} / u_{i-1}\)
 \(v_{i} \leftarrow b_{i}-b_{i-1}-h_{i-1} v_{i-1} / u_{i-1}\)
 end for
 \(z_{n} \leftarrow 0 \quad \triangleright\) Back substitution
 for $i=n-1, n-2, \ldots, 1$ do
$z_{i}=\left(v_{i}-h_{i} z_{i+1}\right) / u_{i}$
end for
$z_{0} \leftarrow 0$.

For natural cubic splines, we do have the following result:
Theorem 5.3. Let $f \in C^{2}[a, b]$. If S is the natural cubic spline interpolating f in the knots $a=t_{0}<t_{1}<\cdots<t_{n}=b$ then

$$
\int_{a}^{b}\left(S^{\prime \prime}(x)\right)^{2} d x \leq \int_{a}^{b}\left(f^{\prime \prime}(x)\right)^{2} d x
$$

Proof. Let $g=f-S$. Then

$$
\int_{a}^{b}\left(f^{\prime \prime}(x)\right)^{2} d x=\int_{a}^{b}\left(S^{\prime \prime}(x)\right)^{2} d x+\int_{a}^{b}\left(g^{\prime \prime}(x)\right)^{2} d x+2 \int_{a}^{b} g^{\prime \prime}(x) S^{\prime \prime}(x) d x .
$$

The statement of the theorem is clearly true if we can prove that the last term is positive. Notice that $S_{i}^{\prime \prime \prime}$ is constant on each each interval $\left[t_{i}, t_{i+1}\right)$, and let us call this constant a_{i}. By partial integration we get

$$
\begin{aligned}
\int_{a}^{b} S^{\prime \prime} g^{\prime \prime} d x & =\sum_{i=0}^{n-1} \int_{t_{i}}^{t_{i+1}} S^{\prime \prime} g^{\prime \prime} d x=\sum_{i=0}^{n-1}\left\{\left(S^{\prime \prime}\left(t_{i+1}\right) g^{\prime}\left(t_{i+1}\right)-S^{\prime \prime}\left(t_{i}\right) g^{\prime}\left(t_{i}\right)-\int_{t_{i}}^{t_{i+1}} S^{\prime \prime \prime} g^{\prime} d x\right\}\right. \\
& =S^{\prime \prime}\left(t_{n}\right) g^{\prime}\left(t_{n}\right)-S^{\prime \prime}\left(t_{0}\right) g^{\prime}\left(t_{0}\right)-\sum_{i=0}^{n-1} c_{i} \int_{t_{i}}^{t_{i+1}} g^{\prime} d x=\sum_{i=0}^{n-1} c_{i}\left(g\left(t_{i+1}\right)-g\left(t_{i}\right)\right)=0
\end{aligned}
$$

The curvature of a function f is defined as $\left|f^{\prime \prime}\right| /\left(\sqrt{1+\left(f^{\prime}\right)^{2}}\right)^{3}$. If we assume that $\left|f^{\prime}\right| \ll 1$ we are left with $f^{\prime \prime}$ as a approximate measure for the curvature. In this sense, the natural cubic spline is the smoothest possible function interpolating the given data.

