4.1 Order conditions for Runge-Kutta methods.

Theorem 4.2. Let

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}, \quad t_{0} \leq t \leq t_{\text {end }}
$$

be solved by a one-step method

$$
\begin{equation*}
y_{n+1}=y_{n}+h \Phi\left(t_{n}, y_{n} ; h\right), \tag{10}
\end{equation*}
$$

with stepsize $h=\left(t_{\text {end }}-t_{0}\right) / N_{\text {step }}$. If

1. the increment function Φ is Lipschitz in y, and
2. the local truncation error $d_{n+1}=\mathcal{O}\left(h^{p+1}\right)$,
then the method is of order p, that is, the global error at $t_{\text {end }}$ satisfies

$$
e_{N_{\text {step }}}=y\left(t_{\text {end }}\right)-y_{N_{\text {step }}}=\mathcal{O}\left(h^{p}\right) .
$$

The proof is left as an exercise.
A RK method is a one-step method with increment function $\Phi\left(t_{n}, y_{n} ; h\right)=\sum_{i=1}^{s} b_{i} k_{i}$. It is possible to show that Φ is Lipschitz in y whenever f is Lipschitz and $h \leq h_{\text {max }}$, where $h_{\max }$ is some predefined maximal stepsize. What remains is the order of the local truncation error. To find it, we take the Taylor-expansions of the exact and the numerical solutions and compare. The local truncation error is $\mathcal{O}\left(h^{p+1}\right)$ if the two series matches for all terms corresponding to h^{q} with $q \leq p$. In principle, this is trivial. In practise, it becomes extremely tedious (give it a try). Fortunately, it is possible to express the two series very elegant by the use of B-series and rooted trees.

B-series and rooted trees

B-series in different forms, and under different names, is essential the main tool for constructing order theory for time-dependent problems, like ODEs, DAEs and SDEs. In this note, with a B-series we mean a formal series of the form

$$
\begin{equation*}
B\left(\varphi, x_{0} ; h\right)=x_{0}+\sum_{\tau \in \bar{T}} \alpha(\tau) \cdot \varphi(\tau)(h) \cdot F(\tau)\left(\mathbf{x}_{0}\right) . \tag{11}
\end{equation*}
$$

Here, T is a set of rooted trees, $\bar{T}=T \backslash \emptyset$ where \emptyset refer to the initial value term, $F(\tau)\left(x_{0}\right)$ the elementary differentials, $\varphi(\tau)(h)$ some integral, and $\alpha(\tau)$ is a symmetry factor. The idea is to express the solutions of the exact and the numerical solution after one step as B-series. For instance, consider the automomous ODE $y^{\prime}=f(y), y\left(t_{0}\right)=y_{0}$, and let us solve this by the Euler method. Thus we have

$$
\begin{aligned}
& B\left(e, y_{0} ; h\right)=y\left(t_{0}+h\right)=y\left(t_{0}\right)+h f\left(y_{0}\right)+\frac{1}{2} h^{2} f^{\prime} f+\cdots \\
& B\left(\phi, y_{0} ; h\right)=y_{1}=y\left(t_{0}\right)+h f\left(y_{0}\right)
\end{aligned}
$$

So, if the these solution can be expressed as B-series, which we still have to prove, the first terms will be

τ	α	e	ϕ	F
-	1	h	h	f
0	1	$\frac{1}{2} h^{2}$	0	$f^{\prime} f$

But at the moment, we do not know how the rest of the terms looks like.
Before a more formal derivation of the series, let present a few definitions and results:
Definition 4.3. Let $y=\left[y_{1}, y_{2}, \cdots, y_{m}\right]^{T} \in \mathbb{R}^{m}$ and $f(y)=\left[f_{1}(y), f_{2}(y), \cdots, f_{m}(y)\right]^{T} \in \mathbb{R}^{m}$. The κ^{\prime} th Frechet derivative of f, denoted by $f^{(\kappa)}(y)$ is a κ-linear operator $\mathbb{R}^{m} \times \mathbb{R}^{m} \times \cdots \times \mathbb{R}^{m}$ $(\kappa$ times $) \rightarrow \mathbb{R}^{m}$. Evaluation of component i of this operator working on the m operands $v_{1}, v_{2}, \cdots v_{\kappa} \in \mathbb{R}^{m}$ is given by

$$
\left[f^{(\kappa)}(y)\left(v_{1}, v_{2}, \cdots, v_{\kappa}\right)\right]_{i}=\sum_{j_{1}=1}^{m} \sum_{j_{2}=1}^{m} \cdots \sum_{j_{\kappa}=1}^{m} \frac{\partial^{\kappa} f_{i}(y)}{\partial y_{j_{1}} \partial y_{j_{2}} \cdots \partial y_{j_{\kappa}}} v_{1, j_{1}} v_{2, j_{2}} \cdots v_{\kappa, j_{\kappa}}
$$

where $v_{l}=\left[v_{l, 1}, v_{l, 2}, \cdots v_{l, m}\right] \in \mathbb{R}^{m}$ for $l=1,2, \cdots, \kappa$.

Note that the κ^{\prime} th Frechet derivative is independent of permutations of its operands, thus e.g. $f^{\prime \prime \prime}(y)\left(v_{1}, v_{2}, v_{3}\right)=f^{\prime \prime \prime}(y)\left(v_{3}, v_{1}, v_{2}\right)$.

The multivariable Taylor expansion is, for $y, v \in \mathbb{R}^{m}$:

$$
\begin{equation*}
f(y+v)=f(y)+\sum_{\kappa=1}^{\infty} \frac{1}{\kappa!} f^{(\kappa)}(y)(v, v, \ldots, v)=\sum_{\kappa=1}^{\infty} \frac{1}{\kappa!} f^{(\kappa)}(y)\left(v^{\kappa}\right) \tag{12}
\end{equation*}
$$

the expression to the right is only a convenient way to write the expression in the middle.
Finally, the multinomial theorem states:

$$
\left(v_{1}+v_{2}+\ldots+v_{q}\right)^{\kappa}=\sum_{r_{1}+\cdots+r_{q}=\kappa} \frac{\kappa!}{r_{1}!\cdots r_{q}!} v_{1}^{r_{1}} \cdots v_{q}^{r_{q}}
$$

A similar argument applied to the Frechet derivative gives

$$
\begin{equation*}
f^{(\kappa)}(y)\left(a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{q} v_{q}\right)^{\kappa}=\sum_{r_{1}+\cdots+r_{q}=\kappa} \frac{\kappa!}{r_{1}!\cdots r_{q}!} \cdot \prod_{k=1}^{\kappa} a_{k} \cdot f^{(\kappa)}(y)\left(v_{1}^{r_{1}}, \ldots, v_{q}^{r_{q}}\right) \tag{13}
\end{equation*}
$$

where $\alpha_{k} \in \mathbb{R}$ and $v_{k} \in \mathbb{R}^{m}$.
A list of trees, denoted by $\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{\kappa}\right\}, \tau_{i} \in T, i=1, \cdots, \kappa$ is an ordered set of trees, where each tree might appear more than once. If $\tau_{1}, \tau_{2} \in T$ then $\left\{\tau_{1}, \tau_{2}, \tau_{1}\right\}$ and $\left\{\tau_{2}, \tau_{1}, \tau_{1}\right\}$ are two different lists. If a tree appear k times in the list, the tree has multiplicity k. A multiset of trees, denoted by $\left(\tau_{1}, \tau_{2}, \cdots, \tau_{\kappa}\right)$ is a set of trees where multiplicity is allowed and order does not matter. So $\left(\tau_{1}, \tau_{2}, \tau_{1}\right)=\left(\tau_{2}, \tau_{1}, \tau_{1}\right)$. A tree with multiplicity k will sometimes
be denoted by τ^{k}, so $\left(\tau_{1}, \tau_{2}, \tau_{1}\right)=\left(\tau_{1}^{2}, \tau_{2}\right)$. The set of all possible lists of trees is denoted \tilde{U}, and the set of all possible multisets is denoted U :

$$
\begin{aligned}
\tilde{U} & =\left\{\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{\kappa}\right\}: \tau_{i} \in T, \quad i=1, \cdots, \kappa, \quad \kappa=0,1,2, \cdots\right\}, \\
U & =\left\{\left(\tau_{1}, \tau_{2}, \cdots, \tau_{\kappa}\right): \tau_{i} \in T, \quad i=1, \cdots, \kappa, \quad \kappa=0,1,2, \cdots\right\} .
\end{aligned}
$$

In the lemma below, U_{f} is the set of trees formed by taking a multiset from U and include a root f.

Lemma 4.1. If $X(h)=B\left(\phi, x_{0} ; h\right)$ is some B-series and $f \in C^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ then $f(X(h))$ can be written as a formal series of the form

$$
\begin{equation*}
f(X(h))=\sum_{u \in U_{f}} \beta(u) \cdot \psi_{\phi}(u)(h) \cdot G(u)\left(x_{0}\right) \tag{14}
\end{equation*}
$$

where U_{f} is a set of trees derived from T, by
a) $[\emptyset]_{f} \in U_{f}$, and if $\tau_{1}, \tau_{2}, \cdots, \tau_{\kappa} \in T$ then $\left[\tau_{1}, \tau_{2}, \cdots, \tau_{\kappa}\right]_{f} \in U_{f}$.
b) $G\left([\emptyset]_{f}\right)\left(x_{0}\right)=f\left(x_{0}\right)$ and

$$
G\left(u=\left[\tau_{1}, \cdots, \tau_{\kappa}\right]_{f}\right)\left(x_{0}\right)=f^{(\kappa)}\left(x_{0}\right)\left(F\left(\tau_{1}\right)\left(x_{0}\right), \cdots, F\left(\tau_{\kappa}\right)\left(x_{0}\right)\right)
$$

c) $\beta\left([\emptyset]_{f}\right)=1$ and $\beta\left(u=\left[\tau_{1}, \cdots, \tau_{\kappa}\right]_{f}\right)=\frac{1}{r_{1}!r_{2}!\cdots r_{q}!} \prod_{k=1}^{\kappa} \alpha\left(\tau_{k}\right)$, where $r_{1}, r_{2}, \cdots, r_{q}$ count equal trees among $\tau_{1}, \tau_{2}, \cdots, \tau_{\kappa}$.
d) $\psi_{\phi}\left([\emptyset]_{f}\right)(h) \equiv 1$ and $\psi_{\phi}\left(u=\left[\tau_{1}, \cdots, \tau_{\kappa}\right]_{f}\right)(h)=\prod_{k=1}^{\kappa} \phi\left(\tau_{k}\right)(h)$.

Proof. Writing $X(h)$ as a B-series, we have

$$
\begin{aligned}
f(X(h)) & =f\left(x_{0}+\sum_{\tau \in \bar{T}} \alpha(\tau) \cdot \phi(\tau)(h) \cdot F(\tau)\left(x_{0}\right)\right) \\
& \stackrel{(12)}{=} \sum_{\kappa=0}^{\infty} \frac{1}{\kappa!} f^{(\kappa)}\left(x_{0}\right)\left(\sum_{\tau \in \bar{T}} \alpha(\tau) \cdot \phi(\tau)(h) \cdot F(\tau)\left(x_{0}\right)\right)^{\kappa} \\
& \stackrel{(13)}{=} f\left(x_{0}\right)+\sum_{\kappa=1}^{\infty} \frac{1}{\kappa!} \sum_{\left(\tau_{1}, \tau_{2}, \cdots \tau_{\kappa}\right) \in U} \frac{\kappa!}{r_{1}!r_{2}!\cdots r_{q}!} \\
& \cdot\left(\prod_{k=1}^{\kappa} \alpha\left(\tau_{k}\right) \cdot \phi\left(\tau_{k}\right)(h)\right) f^{(\kappa)}\left(x_{0}\right)\left(F\left(\tau_{1}\right)\left(x_{0}\right), \cdots, F\left(\tau_{\kappa}\right)\left(x_{0}\right)\right) .
\end{aligned}
$$

The number above the equal sign refer to the equation used. The last sum is taken over all possible unordered combinations of κ trees in T. For each set of trees $\tau_{1}, \tau_{2}, \cdots, \tau_{\kappa} \in T$ we assign a $u=\left[\tau_{1}, \tau_{2}, \cdots, \tau_{\kappa}\right]_{f} \in U_{f}$. The theorem is now proved by comparing term by term with (14).

To find the B -series of the exact solution, write the ODE in integral form:

$$
\begin{equation*}
y\left(t_{0}+h\right)=y_{0}+\int_{0}^{h} f\left(y\left(t_{0}+s\right)\right) d s \tag{15}
\end{equation*}
$$

Assume that the exact solution can be written as a B-series

$$
\begin{equation*}
y\left(t_{0}+h\right)=B\left(e, y_{0} ; h\right) \tag{16}
\end{equation*}
$$

Plug this into (15), apply Theorem 4.1 to get

$$
y_{0}+\sum_{\tau \in \bar{T}} \alpha(\tau) \cdot e(\tau)(h) \cdot F(\tau)\left(y_{0}\right)=y_{0}+\sum_{u \in U_{f}} \beta(u) \cdot \int_{0}^{h} \psi_{e}(u)(s) d s \cdot G(u)\left(y_{0}\right)
$$

For each term on the left hand side, there has to be a corresponding term on the right. Or for each $\tau=\left[\tau_{1}, \ldots, \tau_{\kappa}\right] \in T$ there is a corresponding $u=\left[\tau_{1}, \ldots, \tau_{\kappa}\right]_{f} \in U_{f}$, and $\alpha(\tau)=\beta(u)$, $F(\tau)\left(y_{0}\right)=G(u)\left(y_{0}\right)$ and finally $e(\tau)(h)=\int_{0}^{h} \psi_{e}(s) d s$.

This gives us the following theorem:
Theorem 4.4. The exact solution of (4) can be written as a formal series of the form (16) with
i) $\emptyset \in T$, $\bullet=[\emptyset] \in T$, and if $\tau_{1}, \ldots, \tau_{\kappa} \in T$ then $\tau=\left[\tau_{1}, \ldots, \tau_{\kappa}\right] \in T$.
ii) $F(\emptyset)\left(y_{0}\right)=y_{0}, F(\bullet)=f\left(y_{0}\right)$, and $F(\tau)\left(y_{0}\right)=f^{(\kappa)}\left(y_{0}\right)\left(F\left(\tau_{1}\right)\left(y_{0}\right), \ldots, F\left(\tau_{\kappa}\right)\left(y_{0}\right)\right)$.
iii) $\alpha(\emptyset)=1, \alpha(\bullet)=1$ and $\alpha(\tau)=\frac{1}{r_{1}!r_{2}!\cdots r_{q}!} \prod_{k=1}^{\kappa} \alpha\left(\tau_{k}\right)$, where r_{1}, \ldots, r_{q} counts equal trees among the subtrees $\tau_{1}, \ldots, \tau_{\kappa}$.
iv) $e(\emptyset)(h)=1, e(\bullet)(h)=h$ and $e(\tau)(h)=\int_{0}^{h} \prod_{k=1}^{\kappa} e\left(\tau_{k}\right)(s) d s$.

Notice that $e(\tau)(h)=\frac{1}{\gamma(\tau)} h^{\rho(\tau)}$, where $\gamma(\tau)$ is an integer and $\rho(\tau)$ is the number of nodes. This is called the order of the tree τ.

To find the B-series of the numerical solution, write one stop of the RK-method in the form

$$
\begin{align*}
Y_{i} & =y_{0}+h \sum_{j=1}^{s} a_{i j} f\left(Y_{j}\right), \quad i=1, \ldots, s \tag{17}\\
y_{1} & =y_{0}+h \sum_{i=1}^{s} b_{i} f\left(Y_{j}\right) . \tag{18}
\end{align*}
$$

and assume that both the stage values Y_{i} and the numerical solutions can be written as

$$
Y_{i}=B\left(\phi_{i}, y_{0} ; h\right), \quad i=1, \ldots, s, \quad \text { and } \quad y_{1}=B\left(\phi, y_{0} ; h\right)
$$

It is straighforward to see that $\phi_{i}(\emptyset)(h)=\phi(\emptyset)(h)=1$ and

$$
\phi_{i}(\bullet)=\sum_{j=1}^{s} a_{i j} h=c_{i} h, \quad \phi(\bullet)(h)=\sum_{i=1}^{s} b_{i} h
$$

For a general tree $\tau \in T$, insert the B -series for Y_{i} and y_{1} into (18), apply Lemma 4.1 and compare equal terms. This results in the following reccurence formula for the weight functions $\phi_{i}(\tau)$ and $\phi(\tau)$ for a given $\tau=\left[\tau_{1}, \ldots, \tau_{\kappa}\right]$:

$$
\begin{equation*}
\phi_{i}(\tau)(h)=\sum_{j=1}^{s} a_{i j} \prod_{k=1}^{\kappa} \phi_{j}\left(\tau_{k}\right)(h), \quad \phi(\tau)(h)=\sum_{i=1}^{s} b_{i} \prod_{k=1}^{\kappa} \phi_{i}\left(\tau_{k}\right)(h) \tag{19}
\end{equation*}
$$

Notice again that $\phi(\tau)(h)=\hat{\phi}(\tau) \cdot h^{\rho(\tau)}$, where $\hat{\phi}(\tau)$ is a constant depending of the method coefficients. Similar, we can write $\phi_{i}(\tau)(h)=\hat{\phi}_{i}(\tau) \cdot h^{\rho(\tau)}$.

Comparing the series for the exact and the numerical solutions and applying Theorem 4.2 gives the following fundamental theorem:

Theorem 4.5. A Runge-Kutta method is of order p if and only if

$$
\hat{\phi}(\tau)=\frac{1}{\gamma(\tau)}, \quad \forall \tau \in T, \quad \rho(\tau) \leq p
$$

All trees up to and including order 4 and their corresponding terms are listed below:

τ	$\rho(\tau)$	$\hat{\phi}(\tau)=1 / \gamma(\tau)$
\bullet	1	$\sum b_{i}=1$
\vdots	2	$\sum b_{i} c_{i}=1 / 2$
\vdots	3	$\sum b_{i} c_{i}^{2}=1 / 3$
\vdots		$\sum b_{i} a_{i j} c_{j}=1 / 6$
\vdots	4	$\sum b_{i} c_{i}^{3}=1 / 4$
$\vdots \vdots$		$\sum b_{i} c_{i} a_{i j} c_{j}=1 / 8$
0		$\sum b_{i} a_{i j} c_{j}^{2}=1 / 12$
\vdots		
\vdots		$\sum b_{i} a_{i j} a_{j k} c_{k}=1 / 24$

