4.1 Order conditions for Runge-Kutta methods.

Theorem 4.2. Let

y = f(t,y), y(to) =vo,  to <t <tend

be solved by a one-step method

Ynt+1 = Yn + hq)(tm Yn; h)v (10)
with stepsize h = (teng — t0)/Nstep- If

1. the increment function ® is Lipschitz in y, and

2. the local truncation error d, 1 = O(hPH1)

then the method is of order p, that is, the global error at te,q satisfies

eNstep = y(tQNd) - yNstep = O(hp)

The proof is left as an exercise.

A RK method is a one-step method with increment function ®(t,,yn;h) = > i | bik;. It is
possible to show that ® is Lipschitz in y whenever f is Lipschitz and h < Az, where Apqq is
some predefined maximal stepsize. What remains is the order of the local truncation error. To
find it, we take the Taylor-expansions of the exact and the numerical solutions and compare.
The local truncation error is O(hP*1) if the two series matches for all terms corresponding to
h? with ¢ < p. In principle, this is trivial. In practise, it becomes extremely tedious (give it
a try). Fortunately, it is possible to express the two series very elegant by the use of B-series
and rooted trees.

B-series and rooted trees

B-—series in different forms, and under different names, is essential the main tool for construct-
ing order theory for time-dependent problems, like ODEs, DAEs and SDEs. In this note, with
a B—series we mean a formal series of the form

B(p,zo; h) =-’Eo+za(7)-w(T)(h)'F(T)(Xo)- (11)

Here, T is a set of rooted trees, T = T'\() where () refer to the initial value term, F(7)(xo) the
elementary differentials, ¢(7)(h) some integral, and «(7) is a symmetry factor. The idea is to
express the solutions of the exact and the numerical solution after one step as B—series. For
instance, consider the automomous ODE ¢y’ = f(y),y(to) = yo, and let us solve this by the
Euler method. Thus we have

Ble,yos ) = ylto + ) = ylto) + f(yo) + SH2 'S + -
B(#,y0; k) = y1 = y(to) + 1 f(yo)-
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So, if the these solution can be expressed as B-series, which we still have to prove, the first
terms will be

T a e ¢ F
o1 h h f
Dovoin2 o gy

But at the moment, we do not know how the rest of the terms looks like.

Before a more formal derivation of the series, let present a few definitions and results:

Definition 4.3. Let y = [y1,y2, - ,ym]? € R™ and f(y) = [f1(y), f2(3), -, fm(y)]T € R™.
The K'th Frechet derivative of f, denoted by f(%) (y) is a k-linear operator R™ x R™ x - - - x R™
(k times) — R™. FEwvaluation of component i of this operator working on the m operands
v1, V9, - Ux € R™ is given by

(+) I o IR o i 1C) v
[f (y)(v1, v, ’”“)L j;g; z::8yjlayy2--.ajﬁvl,ylv2,yz Uk i

where vy = [V 1,02, U m] €ER™ forl =1,2,--- |k
Note that the x’th Frechet derivative is independent of permutations of its operands, thus e.g.
f" () (v, v2,v3) = " (y)(vs, v1, v2).

The multivariable Taylor expansion is, for y,v € R™:

Fly+v) = f) + Z SO 0,0 = 3O, (12)
k=1

the expression to the right is only a convenient way to write the expression in the middle.

Finally, the multinomial theorem states:
K K! " rq
(1}1+U2—|—...+1}q) = Z Wvl g
rittrg=k q
A similar argument applied to the Frechet derivative gives
(x) . A TTar fO0 00 o
S () (arv1 + agua + . .. 4 aqvg)” = Z W'Hak'f (y)(v1', ... v") (13)
ritetrg=r L T k=1
where a; € R and v, € R™.

A list of trees, denoted by {71,72,--- ,7x}, 7 € T, i = 1,--- ,k is an ordered set of trees,
where each tree might appear more than once. If 71,75 € T then {1,172, 71} and {72, 71,71}
are two different lists. If a tree appear k times in the list, the tree has multiplicity k. A
multiset of trees, denoted by (11,72, - ,Tx) is a set of trees where multiplicity is allowed and
order does not matter. So (71,72,71) = (72,71, 71). A tree with multiplicity k£ will sometimes
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be denoted by 7%, so (11,72, 71) = (72,72). The set of all possible lists of trees is denoted U,
and the set of all possible multisets is denoted U:

U = {{Tl,T27-..7T;@}ITi€T, i:l,...’fq/’ 52071,2,...}7
U = {(n,m, - ,m%):nel, i=1---,k k=0,1,2---}

In the lemma below, Uy is the set of trees formed by taking a multiset from U and include a
root f.

Lemma 4.1. If X (h) = B(¢,x0; h) is some B-series and f € C*(R™,R™) then f(X(h)) can

be written as a formal series of the form

= 3 B ds(w)(h) - G(u)(o) (14)
uelUy

where Uy is a set of trees derived from T', by

a) [(Z)]f €Uy, and if T, 72,--+ ,7x €T then [T1, T2, - ,T,.g]f e Uy.

b) G([01y)(z0) = f(z0) and
Glu=T[r, -, 7lp)(@0) = [ (o) (F(71)(20), -+ , F(7c) (w0)).

c) B([0]f) =1 and B(u = [11, - ,T]f) = T1|T2 ry! Ha (7k),

where r1,72,- -+ ,1¢ count equal trees among 71,72, Cee L The

d) ¢e([0]f)(h) =1 and g(u = [r1,- - 7]f)(h) = [T5=y &(7) (h).

Proof. Writing X (h) as a B-series, we have

FX(R) = f [ zo+ Y alr)-¢(r)(h) - F(7)(xo)

TeT

D3 L) | X alr) o)) - F)
k=0

TeT
(13) 1 k!
- f($0)+ZE Z 7“1!7“2!'--7“(1!
k=1 (7_177—27

: (H () - ¢(Tk)(h)> f(“)(mo)(F(Tl)(xo), -, F(7) (20)).-
k=1

The number above the equal sign refer to the equation used. The last sum is taken over all

possible unordered combinations of k trees in T. For each set of trees 71,79, -+ ,7x € T we
assign a u = [11, 72, -+ ,7x]f € Up. The theorem is now proved by comparing term by term
with (14). O
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To find the B—series of the exact solution, write the ODE in integral form:

otto +m =+ [ St + o). (15
Assume that the exact solution can be written as a B-series
y(to + h) = B(e, yo; h). (16)
Plug this into (15), apply Theorem 4.1 to get
wo+ Y a(r) - e(r)(h) - F(r)(wo) =mo+ 3 Blu / e (u)(s)ds - G(u)(yo)-
TeT ueUy

For each term on the left hand side, there has to be a corresponding term on the right. Or for
each 7 = [ry,...,74] € T there is a corresponding w=[r,...,7]s € Uy, and (1) = B(u),

F(7)(yo) = G(u )(yo) and finally e(r)(h) = [’ e(s

This gives us the following theorem:

Theorem 4.4. The exact solution of (4) can be written as a formal series of the form (16)
with

i)0eT, e=[0eT, and if 1,...,7x €T thenT— [T1,...,7] €T.
ii) F(0)(yo) = yo. F(®) = f(y0), and F()(yo) = f*)(y0) (F(71)(v0), - -, F () (%0))-
iii) a(0) =1, a(e) =1 and a(r) = mnk:l a(tg), where T1,...,7q counts equal trees
among the subtrees T, ..., Tx.
iv) e(0)(h) = 1, e()(h) = h and e(r = Jo Tz e(7i)(s)ds.

Notice that e(7)(h) = ﬁh’)(ﬂ, where 7(7) is an integer and p(7) is the number of nodes.
This is called the order of the tree .

To find the B—series of the numerical solution, write one stop of the RK—method in the form

yi=y0+h> bif(¥;). (18)
=1

and assume that both the stage values Y; and the numerical solutions can be written as

)/Z:B(gblay()ah)a izla"'asa and ylzB(gb’yOah)

It is straighforward to see that ¢;(0)(h) = ¢(0)(h) =1 and

$i(s) =Y agh=cih,  ¢(s)(h) =D bih.
J=1 i=1
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For a general tree 7 € T, insert the B-series for Y; and y; into (18), apply Lemma 4.1 and
compare equal terms. This results in the following reccurence formula for the weight functions
¢i(7) and ¢(7) for a given 7 = [r,..., 74]:

¢i(r)(h) =D ai; [[¢5(m)(m), o) (B) =D bi [] di(m) () (19)
k=1 1

j=1 i=1 k=

Notice again that ¢(7)(h) = ¢(r) - h*("), where ¢(7) is a constant depending of the method
coefficients. Similar, we can write ¢;(7)(h) = ¢i(7) - h*(7).

Comparing the series for the exact and the numerical solutions and applying Theorem 4.2
gives the following fundamental theorem:

Theorem 4.5. A Runge-Kutta method is of order p if and only if

(1) =—=, VreTl, p(r)<p

All trees up to and including order 4 and their corresponding terms are listed below:

p(r) | d(r) =1/4(7)
1 Shi=1

2 ZbiCz‘Zl/Q

3 Sbic2 =1/3
Ebiaijcj = 1/6

4 Sbic} =1/4

Z biciaijcj - 1/8

E biazjc]z = 1/12

W._.<:.<:*§H..<:... 5

Z biaijajkck = 1/24
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