
TMA4215 Numerical Mathematics:
Lecture notes.

Anne Kværnø

November 22, 2016

Contents

1 How to develop, analyse and test a numerical algorithm 2

2 Error propagation 5

3 Norms and inner products on Rm 8

4 Extrapolation methods 9

5 Solution of systems of nonlinear equations 12

6 Cubic Splines 16
6.1 Introduction . 16
6.2 Cubic splines . 17

1

1 How to develop, analyse and test a numerical algorithm

The aim of this section is give one example of how to develop an algorithm, how to anal-
yse it and how to perform and present the result of an numerical experiment. Numerical
differentiation is chosen as an example here. Roughly the steps are:
• Given a problem, or rather a class of problems.
• Suggest an algorithm for finding a numerical approximation to the solution of the prob-

lem.
• Do some analysis of the algorithm, usually an error/convergence analysis.
• Choose carefully some test problems, and use those to confirm that the algorithm behaves

as expected.
• Present the result.

So let us see how this applies to the example of numerical differentiation.

Problem: Given an f ∈ C1(a, b) and some arbitrary x0 ∈ (a, b), find a numerical approxi-
mation to f ′(x0).

Algorithm: In this case, we can simply use the definition of the derivative:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

So our algorithm is: Given h > 0 (and we assume h to be small) the approximation is

f ′(x0) ≈
f(x0 + h)− f(x0)

h
. (1)

This particular approximation is called the forward difference approximation.

Error analysis: The error is

e(h; f, x0) = f ′(x0)−
f(x0 + h)− f(x0)

h
.

So the error depends on the method parameter h, which we can control, and of the problem,
in this case the function f and the point x0. In the following, we will for short use e(h) unless
we want to emphasise the dependence on f and/or x0. The sign of the error does usually not
matter.
To get an expression for the error, make a taylor expansion of f(x0 + h):

e(h) = f ′(x0) +
f(x0) + hf ′(x0) + 1

2h
2f ′′(ξ)

h
=

1

2
hf ′′(ξ), ξ ∈ (x0, x0 + h). (2)

This is in fact an exact expression for the error, but ξ is unknown, and in practice we do
not know f ′′(x) (after all, we want an approximation for f ′(x). We may however add the
assumption that f ′′(x) exists and is bounded on the open interval (a, b), that is there exist a
constant M > 0 such that

|f ′′(x)| ≤M, for all x ∈ (a, b). (3)

2

which again leads to the error bound

|e(h)| ≤ 1

2
Mh (4)

Now to complete the argument: Since (a, b) is an open interval, x0 ∈ (a, b) then also x0 + h ∈
(a, b) for sufficiently small h. From (4) we can then conclude that the approximation (1)
converges to f ′(x0), in the sense that

|e(h)| −−−→
h→0

0.

Numerical verification: The next step is now to verify the theory by some numerical
experiments. Choose a test problem that
• satisfies all conditions of the theory,
• for which an exact solution is known (if possible),
• is not too trivial1.

In our case, let us choose the test problem

f(x) = sin(x), x0 = 0.5. (5)

with exact solution f ′(x) = cos(x). Since f ∈ C∞(R) and |f (p)| ≤ 1, the conditions of the
theory is satisfied with M = 1. Let us now justify the error expression (2). We will pretend
that f ′′ is unknown. If f ′′ is continuous around x0, then for small values of h, we have
f ′′(ξ) ≈ f ′′(x0) so that |e(h)| ≈ Ch, and |e(h/2)| ≈ |e(h)|/2. And this is something that we
can measure. The results the of experiment is given in Table 1.

h |e(h)| |e(h)/e(h/2)|
0.1 2.54 · 10−2 2.06
0.05 1.23 · 10−2 2.03
0.025 6.08 · 10−3 2.02
0.0125 3.02 · 10−3

So, the result of this experiment complies with the error expression (2).

Convergence plots In this course, we will several time be in the situation that the error
of our methods is given by

|e(h)| ≈ Chp (6)

where C is some unknown constant, and h is some method dependent parameter. In this case
the method is said to be of order p. Assume that we have measured e(h) for different values
of h. The results can of course be presented in a table, as above, but it may be even more
illustrative using a graph, in particular if several methods are compared. Now, taking the
logarithm on both sides of (6) , we get

log |e(h)| ≈ p log h+ logC,

1Well: in the process of implementing the algorithm, it is often a good idea to use examples with trivial
solutions, just to rule out coding bugs.

3

which is a straight line with slope p. For this reason, the correct way to display the error as
a function of h is to use a loglog plot. An example of this is given in Figure 1. In this plot,
also a reference line (y(h) = h1) is included, making it easy to see that this method really is
of order 1.

10
-4

10
-3

10
-2

10
-1

h

10
-5

10
-4

10
-3

10
-2

10
-1

T
h

e
 e

rr
o

r

Convergence plot of the differentiation method

Forward difference

Reference line, p=1

Figure 1: Errors of the forward difference approximation to f ′(x0) with f(x) = sinx and
x0 = 0.5.

4

2 Error propagation

When solving problems (mathematical models) on computers, there are at least three sources
of errors:
• Data errors: For example, input data (constants and parameters) are given from physical

measurements, and are therefore subject to measurement errors.
• Rounding errors: Only a finite set of numbers can be represented in a computer, and

each step in a sequence of operations produces a rounding error.
• Approximation errors: An approximation to the solution of the problem is usually found

by some numerical method.
If x is the exact value, the approximated value is given by

x̃ = x+ ∆x = x(1 + δx)

where ∆x is the absolute error and δx = ∆x/x the relative error.
We will now see how errors in input data, represented by x = (x1, x2, . . . , xm) ∈ D ∈ Rm

propagates in the model given by

y = ϕ(x), ϕ : D → R,

where y is the output of the model. We will assume ϕ to be sufficiently differentiable. Given
errors in the input data xi, we get

y + ∆y = ϕ(x1 + ∆x1, . . . , xm + ∆xm) = ϕ(x) +

m∑
i=1

∂ϕ

∂xi
∆xi

Here quadratic terms are ignored. Thus, the absolute error in y is given by

∆y =

m∑
i=1

∂ϕ

∂xi
∆xi

and the relative error

δy =
∆y

y
=

m∑
i=1

∂ϕ

∂xi

xi
ϕ
δxi.

From the triangle inequality, we get

|δy| ≤
m∑
i=1

∣∣ ∂ϕ
∂xi

xi
ϕ

∣∣ |δxi|.
The expression

∣∣ ∂ϕ
∂xi

xi
ϕ

∣∣ is thus the factor of which the error in xi is amplified or damped, and
is often referred to as the condition numbers of the problem. If the condition number is � 1
the problem is ill-conditioned, otherwise it is well-conditioned. If the number is > 1, the error
is amplified, so if ϕ is a part of a process and will be repeated several times, the complete
process will be unstable.
From this, the error propagation of some common operations can be derived:

5

ϕ Absolute error Relative error

y = x1 + x2, ∆y = ∆x1 + ∆x2, δy =
x1

x1 + x2
δx1 +

x2
x1 + x2

δx2

y = x1x2, ∆y = x2∆x1 + x1∆x2, δy = δx1 + δx2,

y =
x1
x2
, ∆y =

1

x2
∆x1 +

x1
x22

∆x2, δy = δx1 − δx2,

y =
√
x, ∆y =

1

2
√
x

∆x δy = 1
2δx.

With respect to the relative errors in y, we observe that addition is ill-conditioned if x1 ≈ −x2,
thus subtraction of two almost equal numbers should be avoided. All other operations in this
table are well-conditioned. With respect to the absolute error, division with x2 small compared
to x1 will amplify the errors, so will taking the square root of small numbers.

Example 2.1. Given the quadratic equation

x2 + px+ q = 0, p > 0

with solutions x = (−p±
√
p2 − 4q)/2. Let us consider the computation of one of the roots,

x1 = ϕ(a, b) =
−p+

√
p2 − 4q

2
.

The relative error in x1 is

δx1 = − p√
p2 − 4q

δq +
p+

√
p2 − 4q

2
√
p2 − 4q

δq.

If p > 0 and q < 0 then the condition numbers satisfy∣∣∣∣∣− p√
p2 − 4q

∣∣∣∣∣ < 1 and

∣∣∣∣∣p+
√
p2 − 4q

2
√
p2 − 4q

∣∣∣∣∣ < 1.

In this case, the problem is really well-conditioned. But if p2 ≈ 4q the condition numbers can
be large and the problem ill-conditioned. These conclusions also hold for the second root (check
it yourself).
What about the practical computations. Let us assume the well-conditioned case, p > 0 and
q < 0. In the computer, the following computations will be performed to compute the two roots:

r = p2

s = r − 4q

t =
√
s

u1 = −p+ t u2 = −p− t
x1 = u1/2 x2 = u2/2

6

According to the discussion above, all operations are harmless, except for possibly the compu-
tation of u1. If p2 � −4q then p ≈ t and we have subtraction of two almost equal numbers.
We can illustrate this numerically by an example: Let p = 1.2 and q = −1.4 · 10−8. The
roots x̃i are found by the straightforward operation in matlab x1 = (-p+sqrt(p^2-4*q))/2
and similar for x2. The result, together with the exact values of the roots are

x1 = 1.166666655324074 . . . · 10−8, x̃1 = 1.166666652174797 · 10−8, |δx1| = 2.7 · 10−9,

x2 = −1.200000011666666 . . . , x̃2 = −1.200000011666666, |δx2| ∼ ε,

where ε = 2.2 ·10−16 is the machine precision. The error in x1 may still seem small, but it has
in fact been amplified by a factor of approximately 107. In this case, there is a simple remedy.
Noticing that x1x2 = q makes it possible to compute x1 = q/x2, which is a well conditioned
operation. In fact, we get

x̃1 = 1.166666655324074 · 10−8, |δx1| ∼ ε.

To sum up:
• Condition numbers tell how much an error in input data can be amplified by the model.
• Rounding errors may cause mayhem even in well behaved-problems. Sometimes, but

not always, the problem can be solved by rearranging the computations.
• Avoid subtraction of two almost equal numbers.

7

3 Norms and inner products on Rm

Let Rm denote the set of all m-dimensional column vectors x = [x1, x2, . . . , xm]T with real-
number coefficients.

Definition 3.1. A vector norm on Rm is a function ‖ · ‖ : Rm → R satisfying

1. ‖x‖ ≥ 0 and ‖x‖ = 0 ⇔ x = 0,

2. ‖αx‖ = |α|‖x‖,

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

for all x, y ∈ Rm and for all α ∈ R.

Some common examples of vector norms are:

‖x‖1 =

m∑
i=1

|xi| The l1-norm

‖x‖2 =

√√√√ m∑
i=1

x2i The l2-norm (or Euclidean norm)

‖x‖∞ = max
1≤i≤m

|xi| The l∞-norm (or the max-norm)

Example 3.2. If x = [1.3,−3.5, 2.4] then ‖x‖1 = 7.2, ‖x‖2 = 4.4385 and ‖x‖∞ = 3.5.

Two norms ‖ · ‖a and ‖ · ‖b on Rm are equivalent, that means there exist two real constants c1
and c2 such that for all x ∈ Rm one has that

c1‖x‖a ≤ ‖x‖b ≤ c2‖x‖a.
For the norms mentioned above, the following can be proved (do it!):

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
m‖x‖2 ≤ m‖x‖∞.

Definition 3.3. An inner product on Rm is a function 〈·, ·〉 : Rm × Rm → R satisfying

1. 〈x, y〉 = 〈y, x〉,

2. 〈αx, y〉 = α〈x, y〉,

3. 〈x+ z, y〉 = 〈x, y〉+ 〈z, x〉,

4. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0

for all x, y, z ∈ Rm and α ∈ R.

The best known inner product on Rm is

〈x, y〉 = xT y =

m∑
i=1

xiyi,

but there are others, as we will see later in the course.
Given an inner product, we can always define a norm by ‖x‖2 = 〈x, x〉. Such norms satisfies
the Cauchy-Schwarz inequality :

|〈x, y〉| ≤ ‖x‖‖y‖.
Two vectors x and y are orthogonal if 〈x, y〉 = 0.

8

4 Extrapolation methods

The idea of the extrapolation methods is as follows: If it is possible to express the error of
some numerical approximation as a power series of some parameter (typically a stepsize h),
this information can be used to systematically cancel the lowest order error terms, and thereby
obtain a higher order approximation.
Let us start with an example:

Example 4.1. Consider the central difference formula for approximating the derivative of a
function f at some point x0,

f(x0 + h)− f(x0 − h)

2h
≈ f ′(x0).

By Taylor expansion of f(x0 + h) and f(x0 − h) around x0 the the error can be expressed as
a power series in h:

f(x0 + h)− f(x0 − h)

2h
=

1

2h

∞∑
p=0

(1− (−1)p)
hp

p!
f (p)(x0) = f ′(x0) +

∞∑
k=1

h(2k)

(2k + 1)!
f (2k+1)(x0).

Assume we want to compute some quantity Q with some algorithm F (h) where h is a method
dependent parameter. Further, assume that we have an error expansion given by

F (h) = Q+ C1h
2 + C2h

4 + C3h
6 + · · · = Q+

∞∑
k=1

Ckh
2k. (7)

in which the constants Ck depends on the problem, but not on h. In the example above

F (h) =
f(x0 + h)− f(x0 − h)

2h
, Q = f ′(x0) and Ck =

f (2k+1)(x0)

(2k + 1)!
. (8)

The idea is to compute F (h) for different values of h, and use this information to systematic
eliminate the error terms, and thereby obtain a higher order methods. We can use half the
stepsize to get

F
(
h
2

)
= Q+ C1

(
h
2

)2
+ C2

(
h
2

)4
+ C3

(
h
2

)6
+ · · · (9)

By subtracting (7) from 4 times this equation, and divide the whole thing by 3 we get

4F
(
h
2

)
− F (h)

3
= Q+ C1

2h
4 + C1

3h
6 + · · ·

where C1
k = (4−k+1 − 1)/3 · Ck. This can be done more general: Assume

Tj−1,k = Q+Dkh
2k +Dk+1h

2(k+1) +Dk+2h
2(k+2) + · · ·

Tj,k = Q+Dk

(
h
2

)2k
+Dk+1

(
h
2

)2(k+1)
+Dk+2

(
h
2

)2(k+2)
+ · · ·

for some constants Dk, independent of h. And by the same procedure as above, the h2k-term
can be elminated such that

Tj,k+1 =
4kTj,k − Tj−1,k

4k − 1
= Q+D1

k+1h
2(k+1) +D1

k+2h
2(k+2) + · · · . (10)

9

This gives a systematic way of constructing higher order schemes from a lower order one,

Tj,1 = F

(
h

2j−1

)
, j = 1, 2, . . . (11a)

Tj,k+1 =
4kTj,k − Tj−1,k

4k − 1
, k = 1, 2, . . . , j − 1. (11b)

resulting in a table

F (h) = T1,1

F (h/2) = T2,1 T2,2

F (h/4) = T3,1 T3,2 T3,3

F (h/8) = T4,1 T4,2 T4,3 T4,4

...
...

...
...

. . .

Example 4.2. Let f(x) = sin(x) and use (7) and extrapolation to find an approximation to
f ′(x0) for x0 = 0.5. Starting with h = 0.1, the first four rows in the table will be

0.876120655431924
0.877216948194290 0.877582379115078
0.877491149896850 0.877582550464370 0.877582561887655
0.877559708356366 0.877582561176204 0.877582561890327 0.877582561890369

with errors Ei,i = Q− Ti,i:

E1,1 = 1.46 · 10−3, E2,2 = 1.83 · 10−7, E3,3 = 2.72 · 10−12, E4,4 = 3.55 · 10−15.

This has been computed by the matlab code extrapolation.m.

Other examples satisfying (7) and for which the algorithm (11) are applicable are:

• The trapezoidal rule for integrals
∫ b
a f(x)dx

T (h) = h

1

2
f(x0) +

N−1∑
j=1

f(xi) +
1

2
f(xN)

where h = (b− a)/n for some n, and xi = a+ ih, i = 0, · · · , n. This algorithm is better
known as Romberg integration.

• The solution of an ODE by the implicit midpoint rule from t0 to tend

k1 = f

(
tn +

h

2
, yn +

h

2
k1

)
, yn+1 = yn + hk1.

where F (h) = yN , the numerical solution at tend using the stepsize h = (tend − t0)/N ,
and Q = y(tend). For the extrapolation strategy to work in this case, the nonlinear
equations has to be solved sufficiently accurate.

10

The strategy proposed here can be modified to other situation where the error can be expressed
as power series of h, e.g. if

F (h) = Q+ C1h+ C2h
2 + C3h

3 + C4h
4 + . . .

It is also possible to use other sequences of stepsizes h.
But in all cases, the constants Ck depends on some derivatives of the underlying problem, so
it will only work if this problem is sufficiently differentiable.

11

5 Solution of systems of nonlinear equations

Given a system of nonlinear equations

f(x) = 0, f : Rm → Rm (12)

for which we assume that there is (at least) one solution xi. The idea is to rewrite this system
into the form

x = g(x), g : Rm → Rm. (13)

The solution ξ of (12) should satisfy ξ = g(ξ), and is thus called a fixed point of g. The
iteration schemes becomes: given an initial guess x(0), the fixed point iterations becomes

x(k+1) = g(x(k)), k = 1, 2, (14)

The following questions arise:
(i) How to find a suitable function g?
(ii) Under what conditions will the sequence x(k) converge to the fixed point ξ?
(iii) How quickly will the sequence x(k) converge?
Point (ii) can be answered by Banach fixed point theorem:

Theorem 5.1. Let D ⊆ Rm be a and closed set. If

g(D) ⊆ D (15a)

and

‖g(y)− g(v)‖ ≤ L‖y − v‖, with L < 1 for all y,v ∈ D, (15b)

then G has a unique fixed point in D and the fixed point iterations (14) converges for all
x(0) ∈ D. Further,

‖x(k) − ξ‖ ≤ Lk

1− L
‖x(1) − x(0)‖. (15c)

Proof. The proof is based on the Cauchy Convergence theorem, saying that a sequence {x(k)}∞k=0

converges to some ξ if and only if for every ε > 0 there is an N such that

‖x(l) − x(k)‖ < ε for all l, k > N. (16)

Assumption (15a) ensures x(k) ∈ D as long as x(0) ∈ D. From (14) and (15b) we get:

‖x(k+1) − x(k)‖ = ‖g(x(k))− g(x(k−1))‖ ≤ L‖x(k) − x(k−1)‖ ≤ Lk‖x(1) − x(0)‖.

We can write x(k+p) − x(k) =
∑p

i=1(x
(k+i) − x(k+i−1)), thus

‖x(k+p) − x(k)‖ ≤
p∑

i=1

‖x(k+i) − x(k+i−1)‖

= (Lp−1 + Lp−2 + · · ·+ 1)‖x(k+1) − x(k)‖ ≤ Lk

1− L
‖x(1) − x(0)‖,

12

since L < 1. For the same reason, the sequence satisfy (16), so the sequence converges to
some ξ ∈ D. Since the inequality is true for all p > 0 it is also true for ξ, proving (15c).
To prove that the fixed point is unique, let ξ and η be two different fixed points in D. Then

‖ξ − η‖ = ‖g(ξ)− g(η)‖ < ‖ξ − η‖

which is impossible.

For a given problem, it is not necessarily straightforward to justify the two assumptions of the
theorem. But it is sufficient to find some L satisfying the condition L < 1 in some norm to
prove convergence.
Let x = [x1, . . . , xm]T and g(x) = [g1(x), . . . , gm(x)]T . Let y,v ∈ D, assume D to be convex,2

and let x(θ) = θy + (1 − θ)v be the straight line between y and v. According to the mean
value theorem for functions, for each gi there exist at θ̃i such that

gi(y)− gi(v) = gi(x(1))− gi(x(0)) =
dgi
dθ

(θ̃i)(1− 0), θ̃i ∈ (0, 1)

=
m∑
j=1

∂gi
∂xj

(x̃i)(yj − vj), x̃i = θ̃iy + (1− θ̃i)v

since dxj(θ)/dθ = yj − vj . Then

|gi(y)− gi(v)| ≤
m∑
j=1

| ∂gi
∂xj

(x̃i)| · |yj − vj | ≤

 m∑
j=1

| ∂gi
∂xj

(x̃i)|

max
l
|yl − vl|.

If we let ḡij be some upper bound for each of the partial derivatives, that is

| ∂gi
∂xj

(x)| ≤ ḡij , for all x ∈ D.

then

‖g(y)− g(v)‖∞ =

max
i

m∑
j=1

ḡij

 ‖y − v‖∞.

We can then conclude that (15b) is satisfied if

max
i

m∑
j=1

ḡij < 1.

Newton’s method

Newton’s method is a fixed point iterations for which

g(x(k)) = x(k) − Jf (x(k))−1f(x(k)), (17)
2D is convex if θy + (1− θ)v ∈ D for all y, v ∈ D and θ ∈ [0, 1].

13

where the Jacobian is the matrix function

Jf (x) =

∂f1
∂x1

(x) · · · ∂f1
∂xm

(x)

...
...

∂fm
∂x1

(x) · · · ∂fm
∂xm

(x)

 .

The Newton method can be derived as follow: Consider element i in f , that is fi(x). Do a
multidimensional Taylor expansion of fi(ξ) around the vector x(k), using e(k) = ξ − x(k) This
gives

0 = fi(x
(k)
1 + e

(k)
1 , . . . , x(k)m + e(k)m) = fi +

∂fi
∂x1

e
(k)
1 + · · ·+ ∂fi

∂xm
e(k)m +Ri

The function and all the derivatives are evaluated in x(k). The remainder term Ri consists of
quadratic terms like O(e

(k)
i e

(k)
j). If the error is small, this term is even smaller, so let us now

ignore it and replace the errors e(k)i with an approximation to the error ∆x
(k)
i to compensate.

Doing so for each i = 1, 2, . . . ,m gives us the following system of linear equations,

fi +
∂fi
∂x1

∆x
(k)
1 + · · ·+ ∂fi

∂xm
∆x(k)m = 0, i = 1, 2, . . . ,m.

which is
f(x(k)) + Jf (x(k)) ·∆x(k) = 0.

Solve this with repect to ∆x(k). Remember that ∆x(k) ≈ ξ − x
(k)
k it seems reasonable to

update our iterate with this amount, thus

x(k+1) = x(k) + ∆x
(k)
k

which finally results in (17).
It is possible to prove, e.g. [1, Sec. 7.1] that if i) (12) has a solution ξ, ii) Jf (x) is nonsingular
in some open neighbourhood around ξ and iii) the initial guess x(0) is sufficiently close to ξ,
the Newton iterations will converge to ξ and

‖ξ − x(k+1)‖ ≤ K‖ξ − x(k)‖2

for some positive constant K. We say that the convergence is quadratic.

14

Steepest descent

Steepest descent is an algorithm that search for a (local) minimum of a given function ψ :
Rm → R. The idea is as follows.
a) Given some point x ∈ Rm.
b) Find the direction of steepest decline of ψ from x (steepest descent direction)
c) Walk steady in this direction till ψ starts to increase again.
d) Repeat from a).
The direction of steepest descent is −∇ψ(x), where the gradient ∇ψ is given by

∇ψ(x) =

[
∂ψ

∂x1
(x), . . . ,

∂ψ

∂xm
(x)

]T
.

And the steepest descent algorithm reads

function Steepest Descent(ψ, x(0))
for k=0,1,2,.... do

p = −∇ψ(x(k))/‖∇ψ(x(k))‖ . The steepest descent direction.
Minimize ψ(x(k) + αp), giving α = α?.
x(k+1) = x(k) + α?p

end for
end function

This algorithm will always converge to some point ξ in which ∇ψ(ξ) = 0, usually a local
minimum, if one exist. But the convergence can be very slow.
This can be used to find solution of the nonlinear system of equations (12) by defining

ψ(x) = f(x)T f(x) = ‖f(x)‖22.

Thus, ξ is a minimum of ψ(x) if and only if ξ is a solution of f(x) = 0. In this case, we can
show that

∇ψ(x) = 2Jf (x)T f(x).

15

6 Cubic Splines

6.1 Introduction

Assume that we have a set of n+ 1 points {xi, yi}ni=0 and we want to find a curve interpola-
tiong these points. One possibility is of course to use polynomial interplation, that is, find a
polynomial pn ∈ Pn so that

pn(xi) = yi, i = 0, 1, . . . , n.

This may be quite unsatisfactory, as the following picture demonstrate:

0 2 4 6 8 10 12
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

In the picture to the left, polynomial interpolation have been used, to the right, cubic splines.
The idea of splines is to split the interval [a, b] by a = t0 < t1 < · · · < tn = b, and let
interpolating curve be a polynomial on each subinterval [ti−1, ti). The points ti, i = 0, 1, . . . , n
are called knots (skjøter på norsk), and they may or may not correspond to the interpolation
nodes xi. The piecewise polynomials are then glued together by some smoothness conditions.
More formally, the definition is:

Definition 6.1. On some interval [a, b] , suppose that n+ 1 points a = t0 < t1 < · · · < tn = b
has been specified. A spline of degree k is a function S satisfying

1. On each interval [ti−1, ti), S is a polynomial of degree k.

2. S ∈ C(k−1)[a, b].

We will write the spline by

S(x) =

S0(x) x ∈ [t0, t1)

S1(x) x ∈ [t1, t2)
...
Sn−1(x) x ∈ [tn−1, tn]

(18)

where Si ∈ Pk.

Example 6.2. The linear spline interpolating the the points {ti,yi}ni=0 is given by

Si(x) = yi
x− ti+1

ti − ti+1
+ yi+1

x− ti
ti+1 − ti

, x ∈ [ti, ti+1) i = 0, 1, . . . , n− 1, (19)

the straight lines between the points.

16

6.2 Cubic splines

We will now construct an algorithm for finding the cubic splines, interpolating the points
{ti,yi}ni=0. It means that

Si(x) = aix
3 + bix

2 + cix+ di, x ∈ [ti, ti+1) i = 0, 1, . . . , n− 1

which gives a total of 4n parameters to be determined. A cubic spline is two times continuous
differentiable, thus it has has to satisfy

Si(ti) = yi, Si(ti+1) = yi+1, i = 0, · · · , n− 1 (20)
S′i−1(ti) = S′i(ti), i = 1, 2, . . . , n− 1 (21)
S′′i−1(ti) = S′′i (ti), i = 1, 2, . . . , n− 1 (22)

a total of 4n− 2 conditions, leaving two free parameters. Some common choices for those are

• Natural cubic splines: S′′(t0) = S′′(tn) = 0.

• Clamped cubic splines: S′(t0) and S′(tn) are specified.

• Not-a-knot condition: S′′′0 (t1) = S′′′1 (t1) and S′′′n−2(tn−1) = S′′′n−1(tn).

• Periodic conditions: S′0(t0) = S′n−1(tn) and S′′0 (t0) = S′′n−1(tn).

We will now construct an efficient algorithm for solving finding the splines. The idea is as
follows: Since S is a cubic spline, S′′ is a linear spline. Let zi = S′′(ti), i = 0, 1, . . . , n (to be
found). Further, let hi = ti+1 − ti. Then, from 19 we have that

S′′i (x) =
zi
hi

(ti+1 − x) +
zi+1

hi
(x− ti).

So, by this, (22) is satisfied. Integrating twice gives

Si(x) =
zi

6hi
(ti+1 − x)3 +

zi+1

6hi
(x− ti)3 + Cix+Di.

The integration constants Ci and Di can be determined by (20), the result becomes

Si(x) =
zi

6hi
(ti+1−x)3+

zi+1

6hi
(x−ti)3+

(
yi+1

hi
− zi+1hi

6

)
(x−ti)+

(
yi
hi
− zihi

6

)
(ti+1−x), (23)

We now activate the second condition (21). Notice that

S′i(ti) = −hi
3
zi −

hi
6
zi+1 −

yi
hi

+
yi+1

hi

and
S′′i−1(ti) =

hi
6
zi−1 +

hi−1
3
zi −

yi−1
hi−1

+
yi
hi−1

so these conditions will simply become

hi−1zi−1 + 2(hi + hi−1)zi + hizi+1 =
6

hi
(yi+1 − yi)−

6

hi−1
(yi − yi−1), i = 1, · · · , n− 1.

17

Let us now assume z0 = zn = 0, the natural spline condition. The whole system now becomes
a tridiagonal system of equations:

u1 h1

h1 u2 h2

h2 u3 h3

.

hn−3 un−2 hn−2

hn−2 un−1

z1

z2

z3

...

zn−2

zn−1

=

v1

v2

v3

...

vn−2

vn−1

with

hi = ti+1 − ti, ui = 2(hi + hi−1), bi =
6

hi
(yi+1 − yi), vi = bi − bi−1.

Notice that the matrix is diagonal dominant, so the system can be solved by some direct
methods for tridiagonal systems. The complete algorithm becomes:

Input: n, (ti, yi)
n
i=0

for i = 0, 1, . . . , n− 1 do . Set up the linear system
hi ← ti+1 − ti
bi ← 6(yi+1 − yi)

end for

u1 ← 2(h0 + h1) . The LU-factorization
v1 ← b1 − b0
for i = 2, 3, . . . , n− 1 do

ui ← 2(hi + hi−1)− h2i−1/ui−1
vi ← bi − bi−1 − hi−1vi−1/ui−1

end for

zn ← 0 . Back substitution
for i = n− 1, n− 2, . . . , 1 do

zi = (vi − hizi+1)/ui
end for
z0 ← 0.

For natural cubic splines, we do have the following result:

Theorem 6.3. Let f ∈ C2[a, b] . If S is the natural cubic spline interpolating f in the knots
a = t0 < t1 < · · · < tn = b then∫ b

a

(
S′′(x)

)2
dx ≤

∫ b

a

(
f ′′(x)

)2
dx.

18

Proof. Let g = f − S. Then∫ b

a

(
f ′′(x)

)2
dx =

∫ b

a

(
S′′(x)

)2
dx+

∫ b

a

(
g′′(x)

)2
dx+ 2

∫ b

a
g′′(x)S′′(x)dx.

The statement of the theorem is clearly true if we can prove that the last term is positive.
Notice that S′′′i is constant on each each interval [ti, ti+1), and let us call this constant ai. By
partial integration we get∫ b

a
S′′g′′dx =

n−1∑
i=0

∫ ti+1

ti

S′′g′′dx =
n−1∑
i=0

{
(S′′(ti+1)g

′(ti+1)− S′′(ti)g′(ti)−
∫ ti+1

ti

S′′′g′dx

}

= S′′(tn)g′(tn)− S′′(t0)g′(t0)−
n−1∑
i=0

ci

∫ ti+1

ti

g′dx =
n−1∑
i=0

ci(g(ti+1)− g(ti)) = 0.

The curvature of a function f is defined as |f ′′|/
(√

1 + (f ′)2
)3

. If we assume that |f ′| � 1

we are left with f ′′ as a approximate measure for the curvature. In this sense, the natural
cubic spline is the smoothest possible function interpolating the given data.

19

References

[1] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical mathematics, volume 37
of Texts in Applied Mathematics. Springer-Verlag, Berlin, second edition, 2007.

20

