
Steak, shake or break - and other applications for the FEM
Programming project in TMA4220

by Kjetil André Johannessen and Anne Kværnø
TMA4220 - Numerical solution of partial differential equations using the finite element method

You are required to do task 1-3 as this will generate a sufficient code base to do practical ”real
world” problems. For problem 4, choose either 4.1, 4.2 or 4.3.

1 Gaussian quadrature

At the heart of every finite element code, lies the evaluation of an integral. This integral may be of
varying complexity depending on the problem at hand, and many of these integrals does not even
have a known analytical solution. Some integrals are possible to solve analytically, but of such
computational complexity that it is impractical to do so. As such, one often refers to numerical
integration schemes to do the core integration. One popular integration scheme is the Gaussian
quadrature.

In one dimension the gauss quadrature takes the form

∫ 1

−1
g(z)dz ≈

Nq∑
q=1

ρqg(zq),

where Nq is the number of integration points, zq are the Gaussian quadrature points and ρq are the
associated Gaussian weights.

This extends to higher dimensions by

∫
Ω̂
g(z)dz ≈

Nq∑
q=1

ρqg(zq),

and specifying the vector quadrature points zq as well as integrating over a suitable reference
domain Ω̂ (i.e. squares or triangles in 2D, tetrahedra or cubes in 3D).

a) 1D quadrature

Write a matlab function I = quadrature1D(a,b,Nq,g). With the following arguments:

I ∈ R value of the integral
a ∈ R integration start
b ∈ R integration end
Nq ∈ [1, 4] number of integration points
g : R→ R function pointer∗

verify that the function evaluates correctly by comparing with the analytical solution of the integral

∫ 2

1
ex dx

Nq zq ρq
1-point-rule 0 2
2-point-rule −

√
1/3 1√

1/3 1
−
√

3/5 5/9
3-point-rule 0 8/9√

3/5 5/9

−
√

3+2
√

6/5

7
18−
√

30
36

4-point-rule −
√

3−2
√

6/5

7
18+
√

30
36√

3−2
√

6/5

7
18+
√

30
36√

3+2
√

6/5

7
18−
√

30
36

Table 1: 1D gauss quadrature

b) 2D quadrature

Using all numerical quadratures, it is important to first map the function to the referance domain. In
one dimension, this is the interval ζ ∈ [−1, 1]. In higher dimensions, we often map to barycentric
coordinates (or area coordinates as they are known in 2D). The gauss points are then given as
triplets in this coordinate system. The area coordinates are defined by

ζ1 =
A1

A

ζ2 =
A2

A

ζ3 =
A3

A

where A1, A2 and A3 are the area of the triangles depicted in figure 1 and A is the total area of the
triangle. Note that these do not form a linear independent basis as ζ1 + ζ2 + ζ3 = 1.

Nq (ζ1, ζ2, ζ3) ρ

1-point rule (1/3, 1/3, 1/3) 1
(1/2, 1/2, 0) 1/3

3-point rule (1/2, 0, 1/2) 1/3
(0, 1/2, 1/2) 1/3

(1/3, 1/3, 1/3) -9/16
4-point rule (3/5, 1/5, 1/5) 25/48

(1/5, 3/5, 1/5) 25/48
(1/5, 1/5, 3/5) 25/48

Table 2: 2D gauss quadrature

Write a matlab function I = quadrature2D(p1,p2,p3,Nq,g). With the following argu-
ments:

Hint: An easy way of mapping barycentric coordinates ζ to physical coordinates x is by x =
ζ1p1 + ζ2p2 + ζ3p3, where pi, i = 1, 2, 3 is the corner points of the triangle.

Figure 1: Barycentric coordinates in two dimensions

I ∈ R value of the integral
p1 ∈ R2 first corner point of the triangle
p2 ∈ R2 second corner point of the triangle
p3 ∈ R2 third corner point of the triangle
Nq ∈ {1, 3, 4} number of integration points
g : R2 → R function pointer∗

verify that the function evaluates correctly by comparing with the analytical solution of the integral∫∫
Ω

log(x+ y) dx dy,

where Ω is the triangle defined by the corner points (1, 0), (3, 1) and (3, 2).

c) 3D quadrature

The extension of the barycentric coordinates to 3 dimensions and tetrahedral elements, should be
straightforward. The integration schemes can be found in the following table

Write a matlab function I = quadrature3D(p1,p2,p3,p4,Nq,g). With the following
arguments:

Nq (ζ1, ζ2, ζ3, ζ4) ρ

1-point rule (1/4, 1/4, 1/4, 1/4) 1
(0.5854102, 0.1381966, 0.1381966, 0.1381966) 0.25

4-point rule (0.1381966, 0.5854102, 0.1381966, 0.1381966) 0.25
(0.1381966, 0.1381966, 0.5854102, 0.1381966) 0.25
(0.1381966, 0.1381966, 0.1381966, 0.5854102) 0.25

(1/4, 1/4, 1/4, 1/4) -4/5
(1/2, 1/6, 1/6, 1/6) 9/20

5-point rule (1/6, 1/2, 1/6, 1/6) 9/20
(1/6, 1/6, 1/2, 1/6) 9/20
(1/6, 1/6, 1/6, 1/2) 9/20

Table 3: 3D gauss quadrature

I ∈ R value of the integral
p1 ∈ R3 first corner point of the tetrahedron
p2 ∈ R3 second corner point of the tetrahedron
p3 ∈ R3 third corner point of the tetrahedron
p4 ∈ R3 fourth corner point of the tetrahedron
Nq ∈ {1, 4, 5} number of integration points
g : R3 → R function pointer∗

verify that the function evaluates correctly by comparing with the analytical solution of the integral∫∫∫
Ω

ex dx dy dz,

where Ω is the tetrahedron defined by the corner points (0, 0, 0), (0, 2, 0), (0, 0, 2) and (2, 0, 0).

(*) A function pointer in matlab is a variable which represents a function instead of the usual
numerical values. In its simplest form it is declared as

f = @(x) xˆ2 + 1

which would cause the variable f to contain a pointer to the function f(x) = x2 +1. The function
can then be evaluated using one of two methods

y = f(4);
y = feval(f,4);

both of which should yield the same result y = 17. A function may take in several arguments,
i.e. f(x, y) = x2 + y2 may be declared as

f = @(x,y) xˆ2 + yˆ2

again the evaluation of the function is straightforward

y = f(2,2);
y = feval(f,2,2);

Provided that the actual function body is capable of vector or matrix operations, then the input
arguments may be of vector or matrix form. The syntax remains unchanged by this. You may also
use variables in the function declaration, i.e.

a = 2;
f = @(x) x*a

will result in a function f which is doubling its input argument (even if a is changed at a later
point).

2 Poisson in 2 dimensions

We are going to solve the two-dimensional Poisson problem, given by

∇2u(x, y) = −f(x, y) (1)

u(x, y)|r=1 = 0,

with f given in polar coordinates as

f(r, θ) = −8π cos
(
2πr2

)
+ 16π2r2 sin

(
2πr2

)
on the domain Ω given by the unit disk, i.e. Ω =

{
(x, y) : x2 + y2 ≤ 1

}
.

a) Analytical solution

Verify that the following expression is in fact a solution to the problem (1)

u(x, y) = sin
(
2π(x2 + y2)

)
. (2)

b) Weak formulation

Show that the problem can be rewritten as

a(u, v) = l(v), ∀v ∈ X.

with the bilinear functional a and the linear functional l given by

a(u, v) =

∫∫
Ω

∇u · ∇v dx dy,

l(v) =

∫∫
Ω

fv dx dy.

What is the definition of the space X?

c) Galerkin projection

Instead of searching for a solution u in the entire space X we are going to be looking for a
solution in a much smaller space Xh ⊂ X . Let Ω be discretized into K triangles such that our
computational domain is the union of all of these Ω = ∪Kk=1T

k
h . Each triangle T kh is then defined

by its three corner nodes xi. For each of these nodes there corresponds one basis function. The
space Xh is then defined by

Xh =
{
v ∈ X : v|Tk

h
∈ P1(T kh), 1 ≤ k ≤ K

}
for which the basis functions {ϕi}ni=1 satisfy

Xh = span{ϕi}ni=1 ϕj(xi) = δij

and δij is the Kronecker delta. By searching for a solution uh ∈ Xh, it is then possible to write
this as a weighted sum of the basis functions, i.e. uh =

∑n
i=1 u

i
hϕi(x, y).

Show that the problem ”Find uh ∈ Xh such that a(uh, v) = l(v) ∀v ∈ Xh” is equivalent to the
following problem

Find u such that
Au = f (3)

with

A = [Aij] = [a(ϕi, ϕj)]

u = [uih]

f = [fi] = [l(ϕi)].

d) Implementation

We are now going to actually solve the system (3). First we are going to take a look at the triangula-
tion {T kh }. From the webpage http://wiki.math.ntnu.no/tma4220/2011h/start
you may download the mesh generators. For organization purposes you might want to keep them
in a separate directory and see the matlab addpath command.

The function getDisk is generating the unit disk Ω. Plot at least three meshes of different
sizes using the mesh generated from this function. You may want to check the matlab function
trimesh or triplot.

e) Stiffness matrix

Build the stiffness matrix A. You may choose if you perform the integration analytically or by
Gaussian quadrature.

The matrixA should now be singular. Verify this in your code and explain why this is the case.

f) Right hand side

Build the right hand side vector f in the same manner as A. Here you might need to resort to
Gaussian quadrature.

g) Boundary conditions

Implement the homogeneous dirichlet boundary conditions. Describe what method you used for
this and how you did it.

h) Verification

Solve the system (3) and verify that you are getting (approximately) the same result as the analyt-
ical solution (2).

http://wiki.math.ntnu.no/tma4220/2011h/start

3 Moving into 3 dimensions

Figure 2: The beef which is to be studied

a) The Poisson in 3d

We are now going to solve the problem

∇2u = f

u|∂Ω = 0

in three dimensions, meaning that we are looking for a solution u(x, y, z).

Generate a mesh, using the function getBeef from the downloaded mesh generators. This will
give you three variables which will describe the nodal points, the tetrahedral elements and the
index of the boundary nodes. These should be familiar from task 2 as the only difference is that
spatial coordinates have one more component, as well as the elements require one more index
to describe. Note that the function getBeef takes three input arguments. This is since the beef
is stored as a parametric volume described by three parametric variables (ξ1, ξ2, ξ3). You will be
asked to specify the tessellation in each of these directions separately, see figure 3 for details.

Modify your code from task 2 to deal with tetrahedral elements in three dimensions. Use the
following f

f(x, y, z) =
1

x2 + y2 + z2

and homogeneous Dirichlet boundary conditions (uD = 0).

Figure 3: Computational domain Ω

b) Volume visualization

Plot the domain Ω (i.e. the beef). Note that you will not be required to plot every element, as most
will be hidden on the inside of the domain. See the matlab function TriRep for functionality
relating to this.

Plot your solution using isosurfaces. Note that the matlab function isosurface requires your
data to be structured, which it currently is not. You will have to post process the data to get it on
the desired form. Read up on TriScatteredInterp for this.

You are by no means limited to the above functions for plotting. Feel free to experiment using
different techniques or functions.

4.1: Cooking a beef (steak)

a) The heat equation

The heat equation reads

∂u

∂t
= α∇2u

u(t, x, y, z)|∂Ω = uD (4)

u(t, x, y, z)|t=0 = u0(x, y, z)

where α is an positive constant defined by

α =
κ

cpρ

with κ∗∗ being the thermal conductivity, ρ∗∗ the mass density and c∗∗p the specific heat capacity of
the material.

We are going to semidiscretize the system by projecting the spatial variables to a finite element
subspace Xh. Multiply (4) by a test function v and integrate over the domain Ω to get∫∫∫

Ω

∂u

∂t
v dV = −

∫∫∫
Ω

α∇u∇v dV

Note that we have only semidiscretized the system, and as such our unknown u is given as a linear
combination of the spatial basis functions, and continuous in time, i.e.

uh(x, y, z, t) =

n∑
i=1

uih(t)ϕi(x, y, z).

The variational form of the problem then reads: Find uh ∈ XD
h such that∫∫∫

Ω

∂u
∂t v dV = −

∫∫∫
Ω

α∇u∇v dV, ∀v ∈ Xh

⇒
∑
i

∫∫∫
Ω

ϕiϕjdV
∂uih
∂t = −

∑
i

∫∫∫
Ω

α∇ϕi∇ϕjdV uih ∀j

which in turn can be written as the linear system

M
∂u

∂t
(t) = −Au(t) (5)

which is an ordinary differential equation (ODE) with the matrices defined as

A = [Aij] =

∫∫∫
Ω

α∇ϕi∇ϕj dV

M = [Mij] =

∫∫∫
Ω

ϕiϕj dV.

Construct the matrixA andM as defined above.

b) Time integration

The system (5) is an ODE, which should be familiar from previous courses. Very briefly an ODE
is an equation on the form

∂y

∂t
= f(t, y)

where y may be a vector. The simplest ODE solver available is Eulers method

yn+1 = yn + hf(tn, yn).

More sophisticated include the improved eulers methods

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn + hf(tn, yn)))

or the implicit trapezoid rule

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1))

and the famous Runge Kutta methods.

Choose an ODE scheme (based on your previous experience and expertize) and implement your
time integration. Why did you choose the solver you did?

c) Experimentation

The boundary conditions are the physical variables which we have control over. The initial condi-
tion u(t, x, y, z)|t=0 is the beef as it is prior to any cooking. A proper choice here would be room
temperature, say 20◦C.

The actual cooking will be a product of the dirichlet boundary conditions. Frying the beef on a
pan will result in a high (how high?) temperature on the bottom and room temperature on the other
sides of the beef. What should be done to turn the beef and fry the other side? When should we
turn it? Cooking it in an oven would result in a uniform boundary conditions on all sides of say
225◦C. How long will it have to stay in? Is it a good idea to keep it in room temperature after
cooking (and how does this change the boundary conditions)? More exotic cooking techniques
include wrapping it in plastic and putting it in a water bath (not boiling) for some time, and only
frying it on a pan for seconds prior to serving.

Experiment around by cooking it in a number of ways using different boundary conditions. The
optimality criterion is left up to the student. How well is your optimal beef cooked?

(**) Physical proprties of meat

It is hard to generalize too much on the physical properties of the beef as they are dependant on
a number of variables outside the scope of this task. Not only are they dependant on the meat
composition (i.e. what primal cut it is derived from), but it is also dependant on the temperature.
Try and find good approximations for these numbers. A start may be the work of Pan and Singh
(”Physical and Thermal Properties of Ground Beef During Cooking”) which suggests that the
density ρ is in the range 1.006 to 1.033 g/cm3 and the thermal conductivity κ in the range 0.35 to

0.41 W/m·K. The specific heat capacity is not mentioned in the abstract, but may be commented
on in the actual article for those that get their hands on the entire document.

Unconfirmed sources list the specific heat capacity cp of meat as 3 973 J/kg·K. You may use these
values, or better yet: find more reliable, documented values.

4.2 Structural analysis (break)

We are in this problem going to consider the linear elasticity equation. The equations describe
deformation and motion in a continuum. While the entire theory of continuum mechanics is an
entire course by itself, it will here be sufficient to only study a small part of this: the linear elasticity.
This is governed by three main variables u, ε and σ (see table 4). We will herein describe all
equations and theory in terms of two spatial variables (x, y), but the extension into 3D space
should be straightforward.

u =

[
ux
uy

]
-

the displacement vector measures
how much each spatial point has moved
in (x, y)-direction

ε =

[
εxx εxy
εxy εyy

]
-

the strain tensor measures how
much each spatial point has deformed
or stretched

σ =

[
σxx σxy
σxy σyy

]
-

the stress tensor measures how
much forces per area are acting on a
particular spatial point

Table 4: Linear elasticity variables in two dimensions

Note that the subscript denotes vector component and not derivative, i.e. ux 6= ∂u
∂x .

These three variables can be expressed in terms of each other in the following way:

u = u(x) (6)

ε = ε(u) (7)

σ = σ(ε) (8)

The primary unknown u (the displacement) is the one we are going to find in our finite element
implementation. From (6) we will have two displacement values for each finite element ”node”,
one in each of the spatial directions.

The relation (7) is a purely geometric one. Consider an infinitesimal small square of size dx and
dy, and its deformed geometry as depicted in figure 4. The strain is defined as the stretching of
the element, i.e. εxx = length(ab)−length(AB)

length(AB) . The complete derivations of these quantities is
described well in the Wikipedia article on strain, and the result is the following relations

εxx(u) =
∂ux
∂x

εyy(u) =
∂uy
∂y

(9)

εxy(u) =
∂ux
∂y

+
∂uy
∂x

.

Note that these relations are the linearized quantities, which will only be true for small deforma-
tions.

http://en.wikipedia.org/wiki/Deformation_(mechanics)#Normal_strain

Figure 4: An infinitesimal small deformed rectangle

For the final relation, which connects the deformation to the forces acting upon it, we turn to
the material properties. Again, there is a rich literature on the subject, and different relations or
physical laws to describe different materials. In our case, we will study small deformations on
solid materials like metal, wood or concrete. It is observed that such materials behave elastically
when under stress of a certain limit, i.e. a deformed geometry will return to its initial state if all
external forces are removed. Experiment has shown that the Generalized Hooks Law is proving
remarkable accurate under such conditions. It states the following. Consider a body being dragged
to each side by some stress σxx as depicted in figure 5. Hooks law states that the forces on a
spring is linearly dependant on the amount of stretching multiplied by some stiffness constant, i.e.
σxx = Eεxx. The constant E is called Young’s modulus. Generalizing upon this law, we see that
materials typically contract in the y-direction, while being dragged in the x-direction. The ratio of
compression vs expansion is called Poisson’s ratio ν and is expressed as εyy = −νεxx. This gives
the following relations

εxx =
1

E
σxx

εyy = − ν
E
σxx

Due to symmetry conditions, we clearly see that when applying a stress σyy in addition to σxx we
get

εxx =
1

E
σxx −

ν

E
σyy

εyy =
1

E
σyy −

ν

E
σxx

Finally, it can be shown (but we will not) that the relation between the shear strain and shear stress

Figure 5: Deformed geometry under axial stresses

is εxy = 21+ν
E σxy. Collecting the components of ε andσ in a vector, gives us the compact notation

ε̄ = C−1σ̄ εxx
εyy
εxy

 =

 1
E − ν

E 0
− ν
E

1
E 0

0 0 21+ν
E

 σxx
σyy
σxy


or conversely

σ̄ = Cε̄ (10) σxx
σyy
σxy

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 εxx
εyy
εxy


For a body at static equilibrium, we have the governing equations

∇σ(u) = −f (11)[
∂

∂x
,
∂

∂y

] [
σxx σxy
σxy σyy

]
= − [fx, fy]

and some appropriate boundary conditions

a) Weak form

Show that (11) can be written as the scalar equation
2∑
i=1

2∑
j=i

∫
Ω
εij(v)σij(u) dA =

2∑
i=1

∫
Ω
vifi dA

(where we have exchanged the subscripts (x, y) with (1, 2)) by multiplying with a test function

v =

[
v1(x, y)
v2(x, y)

]
and integrating over the domain Ω Moreover, show that this can be written in

compact vector form as ∫
Ω
ε̄(v)TCε̄(u) dA =

∫
Ω
vTf dA

b) Galerkin projection

As in 2b) let v be a test function in the space Xh of piecewise linear functions on some triangula-
tion T . Note that unlike before, we now have vector test functions. This means that for each node
î, we will have two test functions

ϕî,1(x) =

[
ϕî(x)

0

]
ϕî,2(x) =

[
0

ϕî(x)

]
Let these functions be numbered by a single running index i = 2̂i+d, where i is the node number
in the triangulation and d is the vector component of the function.

Show that by inserting v = ϕj and u =
∑

iϕiui into (3) you get the system of linear equations

Au = b

where

A = [Aij] =

∫
Ω
ε̄(ϕi)

TCε̄(ϕj), dA

b = [bi] =

∫
Ω
ϕTi f , dA

(Hint: ε̄(·) is a linear operator)

c) Test case

Show that

u =

[
(x2 − 1)(y2 − 1)
(x2 − 1)(y2 − 1)

]
is a solution to the problem

∇σ(u) = −f in Ω (12)

u = 0 on ∂Ω

where

fx =
E

1− ν2

(
−2y2 − x2 + νx2 − 2νxy − 2xy + 3− ν

)
fy =

E

1− ν2

(
−2x2 − y2 + νy2 − 2νxy − 2xy + 3− ν

)
and Ω = {(x, y) : max(|x|, |y|) ≤ 1} is the refereance square (−1, 1)2.

d) Implementation

Modify your Poisson solver to solve the problem (12). Verify that you are getting the correct
result by comparing with the exact solution. The mesh may be obtained through the Grid function
getPlate().

e) Extension into 3d

Modify your 3d Poisson solver to assemble the stiffness matrix from linear elasticity in three
dimensions.

f) Experimentation

Import a 3d mesh from Minecraft or create one using your choice of meshgenerator.Apply gravity
loads as the bodyforces acting on your domain, this will be the right hand side function f in (11).
In order to get a non-singular stiffness matrix you will need to pose some Dirichlet boundary con-
ditions. Typically you should introduce zero displacements (homogeneous Dirichlet conditions)
where your structure is attached to the ground. This would yield a stationary solution.

Figure 6: Block-structured mesh from the computer game Minecraft

g) Stress analysis

Solving (11) with a finite element method gives you the primary unknown: the displacement u. If
you are interested in derived quantities such as the stresses, these can be calculated from (10). Note
that σ is in essence the derivative of u which means that since u is C0 across element boundaries,
then σ will be discontinuous. To get stresses at the nodal values, we propose to average the stresses
over all neighbouring elements.

Loop over all elements and evaluate (the constant) stresses on that element.For each node, assign
the stresses to be the average stress over all neighbouring elements. This method is called ”Stress
Recovery”.

4.3 Vibration analysis (shake)

Do problem 4.2a) - 4.2d) and read the theory on linear elasticity.

Figure 7: Mass-spring-model

The forces acting on a point mass m by a spring is given by the well known Hooks law:

mẍ = −kx

This can be extended to multiple springs and multiple bodies as in figure 8

Figure 8: 2 degree-of-freedom mass spring model

The physical laws will now become a system of equations instead of the scalar one above. The
forces acting on m1 is the spring k1 dragging in negative direction and k2 dragging in the positive
direction.

m1ẍ1 = −k1x1 + k2(x2 − x1)

This is symmetric, and we have an analogue expression for m2. The system can be written in
matrix form as [

m1 0
0 m2

] ¨[
x1

x2

]
=

[
−k1 − k2 k2

k2 −k2 − k3

] [
x1

x2

]
M ẍ = Ax

When doing continuum mechanics, it is the exact same idea, but the actual equations differ some.
Instead of discrete equations, we have continuous functions in space and the governing equations
are

ρü = ∇σu

semi-discretization yields the following system of equations

M ü = −Au (13)

with the usual stiffness and mass matrix

A = [Aij] =

∫∫∫
Ω

ε̄(ϕi)
TCε̄(ϕj) dV

M = [Mij] =

∫∫∫
Ω

ρϕTi ϕj dV.

e)

Build the 3d mass matrix as given above.

We are now going to search for solutions of the type:

u = ueωit (14)

which inserted into (13) yields
ω2Mu = Au (15)

f)

Equation (15) is called a generalized eigenvalue problem (the traditional being with M = I). Find
the 20 first eigenvalues ωi and eigenvectors ui corresponding to this problem.

g)

Let x0 be your initial geometric description (the nodal values). Plot an animation of the eigen-
modes by

x = x0 + αui sin(t)

You may want to scale the vibration amplitude by some visually pleasing scalar α, and choose
the time steps appropriately. Note that for visualization purposes, you will not use the eigenfre-
quency ωi since you are interested in viewing (say) 1-5 complete periods of the vibration, but for
engineering purposes this is a very important quantity.

h)

Experimentation really depends on your choice of problem. Typically one is interested in that the
lowest frequencies does not resonate with natural frequencies of the environment. What exactly
these natural frequencies are depends on your problem at hand, but may be sound from airplanes
or machines influencing buildings or it may be wind frequencies flowing around bridges.

Another interesting question is with regards to ”harmonic” frequencies. The 1st nonzero frequency
is often called the fundamental frequency, and the rest is called overtones. If the overtones are
multiplies of the natural frequency (i.e. fi = nf0, where n is an integer and f0 is the fundamental
frequency) the sound is said to be harmonic. This is an important part in all musical instruments.
More information can be found in the Wikipedia article on pitch.

http://en.wikipedia.org/wiki/Pitch_(music)

	Gaussian quadrature
	Poisson in 2 dimensions
	Moving into 3 dimensions

