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Contact during exam:
Anne Kværnø tel. 92663824

Exam in TMA4220
Numerical Solution of Partial Differential Equations Using

Element Methods

Friday December 9, 2011
Time: 15.00 – 19.00

Auxiliary materials: Simple calculator (Hewlett Packard HP30S or Citizen SR-270X)
All printed and hand written material.

Problem 1
Consider the Poisson equation

−∆u = f in Ω ∈ R2 (1)
u = g on ΓD

∂u

∂n
= φ on ΓN

where ΓN ∪ ΓD = ∂Ω is the boundary of the domain Ω.

a) Establish the weak formulation:

Find ◦u ∈ V such that a(
◦
u, v) = F (v) ∀v ∈ V (2)

corresponding to the problem above. In particular, identify the bilinear form
a, the linear form F , the function space V , and explain how the solution u of
(1) and the solution ◦u of (2) are related.

Comment: If you are unsure about how to deal with inhomogeneous boundary con-
ditions, change them to something you are comfortable with, for example u = 0 on
ΓD, in which case ◦u = u. But this simplification gives a slight reduction of the score
of this point.
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Solution:
Multiply the PDE with a test function v, integrate over the domain Ω and use Green’s
theorem. The result is∫

Ω
∇u · ∇v dΩ−

∫
ΓN

∂u

∂n
v ds−

∫
ΓD

∂u

∂n
v ds =

∫
Ω
fv dΩ.

Let v ∈ V = H1
ΓD

(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}. In this case, the integral over ΓD

is 0. Second, choose some Rg ∈ H1(Ω), Rg = g on ΓD and u =
◦
u+ Rg, where

◦
u ∈ V . In

this case, the variational formulation is given by (2) with V = H1
ΓD

(Ω),

a(
◦
u, v) =

∫
Ω
∇◦u · ∇v dΩ, F (v) =

∫
Ω
fv dΩ−

∫
Ω
∇Rg · ∇v dΩ +

∫
ΓN

φv ds. (3)

and finally u =
◦
u+Rg.

We would like to find an approximation to the so-
lution of (2) by using a finite element method. As
a reference element, we choose an equilateral trian-
gle, with side length h. Use linear, nodal element
functions, with one node in each corner of the ele-
ment.

x

y

h

hh

K

b) Find the three linear shape functions for the element K. Find the elemental
stiffness matrix AK and the elemental load vector bK .

Hint: The area of an equilateral triangle is h2
√

3/4, and the volume of a pyramid is
BH/3, where B is the area of the base and H the height.

Solution:
The three nodes are given by N0 = (0, 0), N1 = (h, 0) and N2 = (h/2,

√
3h/2). The

corresponding three shape functions becomes:

ψ0 = 1− x

h
− y√

3h
, ψ1 =

x

h
− y√

3h
, ψ2 =

2y√
3h
.

The gradients becomes

∇ψ0 =
1

h
(−1,− 1√

3
)T , ∇ψ1 =

1

h
(1,− 1√

3
)T ∇ψ2 =

1

h
(0,

2√
3

)T

and the elements becomes

AK
00 =

∫
K
∇ψ0·∇ψ0 dΩ =

4

3h2
|K| =

√
3

3
, AK

01 =

∫
K
∇ψ0·∇ψ1 dΩ = − 2

3h2
|K| = −

√
3

6
,
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etc. Finally, the elemental matrix becomes

AK =

√
3

6

 2 −1 −1
−1 2 −1
−1 −1 2


Since f is still not known, we can only give a generic form of the elemental load vector
bK , that is

bKj =

∫
K
fψj dΩ

for j = 0, 1, 2. Boundary contributions are not included. If we anticipate the course of
events (which you are not assumed to do on the exam) let f = 1. In this case, bKj =∫
K ψj dΩ, which is exactly the volume of a pyramid with height 1 and a base K, which has
the volume h2

√
3/4/3, so

If f = 1 then bK =

√
3h2

12

1
1
1



Now, consider the Poisson equation
(1) with f = 1 and homogenous
Dirichlet boundary conditions

u = 0 on ∂Ω.

The domain Ω is a regular hexagon,
and each edge is of length 1.
We will solve this problem by the fi-
nite element method, using the finite
elements from b), and with a triangu-
lation based on equilateral triangles,
see the figure.

x

y

1 2

3 4 5

6 7

c) Show that the finite element system

Ahu = fh,

where Ah is the stiffness matrix, u the load vector, and u is a vector of the
approximations of the numerical solutions in the nodes, can be written as

α β β β 0 0 0
β α 0 β β 0 0
β 0 α β 0 β 0
β β β α β β β
0 β 0 β α 0 β
0 0 β β 0 α β
0 0 0 β β β α





u1

u2

u3

u4

u5

u6

u7


=



γ
γ
γ
γ
γ
γ
γ
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Find α, β and γ.

Solution:
We know that Ah,i,j =

∑
K AK

·,· , that is, Ah,ij is the sum of the corresponding elements
for the elemental matrices from elements having i, j as nodes. Similar for fh,i. Thus

α = 6 ·
√

3

3
= 2
√

3, β = −2 ·
√

3

6
= −
√

3

3
, γ = 6 ·

√
3h2

12
=

√
3h2

2
.

with h = 0.5.

d) Let us change the boundary conditions of (1) to

u = −x on ∂Ω.

How will you solve this problem using the finite element method above?
Demonstrate the idea by rewriting the first equation (row) of the finite el-
ement system to include contributions from the nonhomogeneous boundary
conditions.
Solution:
The discrete solution can be written as

uh =
◦
uh +Rg,h =

∑
j∈N

ujϕj +
∑
j∈∂N

ujϕj

where N represents the nodes inside the domain Ω and ∂N those on the boundary,
in the latter the values of ui are known. Using the standard procedure, the discrete
variational form becomes∑

j∈N

(∫
Ω
∇ϕi∇ϕj dΩ

)
uj =

∫
fϕi dΩ−

∑
j∈∂N

(∫
Ω
∇ϕi∇ϕj dΩ

)
uj , i ∈ N .

So we got the contributions from the boundary conditions on the right hand side.
For i = 1, we get contributions from the nodes (0,−

√
3/2), (−1/2,−

√
3/3) and

(−3/4,−
√

3/4). So, the first element in the right hand side becomes:

fh,1 = γ − β · 0− β · 1

2
− β · 3

4
=

13

24

√
3.

Consider the Poisson problem again, but
this time with domain composed by two
subdomains, separated by the x-axis, and
with different diffusion constants. More
specific, consider

−κ1 ∆u = f in Ω1

−κ2 ∆u = f in Ω2

u = 0 on Γ1

∂u

∂n
= φ on Γ2

κ1
∂u

∂y
= κ2

∂u

∂y
for y = 0

with κ1, κ2 > 0.

x

y

Ω1, κ1

Ω2, κ2

Γ1

Γ2

,
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e) Establish the weak formulation for this problem, and discuss existence and
uniqueness of the solution.
Can the weak formulation be reformulated as a minimization problem? If yes,
which one? Give a reason for your answer.
Solution:
As usual, multiply with a test function v, integrate over the domain Ω and use Greens
theorem on each subdomain“”

−κ1

∫
Ω1

∆uv dΩ− κ2

∫
Ω2

∆uv dΩ =

∫
Ω
fv dΩ

or

κ1

(∫
Ω1

∇u · ∇vdΩ−
∫

Γ1

∂u

∂n1
v ds−

∫
Γ0

∂u

∂n1
v ds

)
+κ2

(∫
Ω2

∇u · ∇vdΩ−
∫

Γ2

∂u

∂n2
v ds−

∫
Γ0

∂u

∂n2
v ds

)
=

∫
Ω
fv dΩ.

where Γ0 is the the intersection of Ω and the x-axis. Since n1 = −n2 the boundary
condition on y = 0 makes the two integrals over Γ0 to cancel out. By requiring v = 0
on Γ1 the integral over this part of the boundary becomes 0. The variational form
becomes

Find u ∈ H1
Γ1

(Ω) such that a(u, v) = F (v) ∀v ∈ H1
Γ1

(Ω) (4)

where

a(u, v) = κ1

∫
Ω1

∇u · ∇v dΩ + κ2

∫
Ω2

∇u · ∇v dΩ

F (v) =

∫
Ω
fv dΩ + κ2

∫
Γ2

φv ds,

H1
Γ1

(Ω) = {v ∈ H1(Ω) : v = 0 on Γ1}.

According to Lax-Milgram’s lemma, (4) has a unique solution if

• H1
Γ1

(Ω) is a Hilbert space (OK).
• a is bilinear (OK), continuous (OK) and coercive (se below).
• F is linear (OK) and continuous (OK).

But we need to prove that a is coercive, that is there exist an α > 0 such that

a(v, v) ≥ α‖v‖2H1(Ω), ∀v ∈ H1
Γ1

(Ω) (5)

Let κ = min{κ1, κ2} > 0. Then, for all v ∈ H1
Γ1

(Ω):

a(v, v) ≥ κ
∫

Ω
∇v · ∇v dΩ = κ|v|2H1(Ω)

From Poincaré inequality we know there exist a constant CΩ > 0 such that

‖v‖2L2(Ω) ≤ CΩ|v|2H1(Ω), ∀v ∈ H1
Γ1

(Ω)

and then
‖v‖2H1(Ω) = ‖v‖2L2(Ω) + |v|2H1(Ω) ≤ (1 + CΩ)|v|2H1(Ω)
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So (5) is satisfied, with α = κ/(1 + CΩ).

Finally a(u, v) = a(v, u) so there is an equivalent minimization problem:

Find u ∈ H1
Γ1

(Ω) such that J(u) = minJ(v), ∀v ∈ H1
Γ1

(Ω)

with
J(v) =

1

2
a(v, v)− F (v).

Problem 2

Consider the problem

0.01uxx + 2ux = 0, u(0) = 0, u(1) = 1.

This problem is solved by a linear finite element method with nodal basis functions
on a uniform grid, that is Vh = X1

h with constant h = 1/M .

a) Show that the finite element method can be expressed as

Ahu + Chu = f

and find the matrices Ah, Ch and the vector f . Here, Ah represents the diffusion
term and Ch the advection term.
Solution:
Similar problems has been solved several times, see also sec. 11.2 in the book. We
get

Ah =
1

100h
tridiag{1,−2, 1} ∈ R(M−1)×(M−1)

Ch = tridiag{−1, 0, 1} ∈ R(M−1)×(M−1)

f = (0, · · · , 0, 1/(100h)− 1)T ∈ RM−1

The exact and the numerical solution, with M = 40 elements is given in the figure
below.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

u
(x

)

 

 

Exact

Numerical
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b) Explain why the numerical solution oscillates.
How many (equal) elements are needed to avoid oscillations?
Solution:
The linear system above can be written as a difference equation:( 1

100h
+ 1
)
ui+1 −

2

h
ui +

( 1

100h
− 1
)
ui−1, i = 1, 2, . . . ,M − 1

with u0 = 0 and uM = 1. We search for solutions on the form ui = ρi, there are two
of them:

ρ1 = 1, ρ2 =
1− 100h

1 + 100h

and the exact solution of the difference scheme can be written as

ui = a1ρ
i
1 + a2ρ

i
2

where a1 and a2 can be found from the boundary conditions. However, if h > 1/100
then ρ2 becomes negative, and the solution starts to oscillates. To avoid the problem,
we have to require h ≤ 1/100, or M ≥ 100.

c) Explain how we can improve the numerical solution based on linear elements
on a uniform grid, without increasing the number of elements.
Solution:
The idea is to add artifical diffusion, so that the oscillation no longer occur, that is
solving the problem

(0.001 + φ)uxx + 2ux = 0

Repeating the analysis (or consider the local Péclet numer directly), tell us that we
will have to require h < (1/100 + φ) which is true for all h if for instance φ = h.
Which corresponds to a downwind scheme.

Problem 3

Point a) and b) are given half weight.

Consider the one-dimensional eigenvalue problem

βux = λu in Ω = (0, 1), u(0) = u(1), (6)

where β is a given constant. Notice the periodic boundary conditions.

a) Verify that the eigenfunctions un and corresponding eigenvalues λn,

un(x) = eiknx, λn = iβkn, with kn = 2πn, i =
√
−1

satisfy (6) for n = 0,±1,±2, . . .
Solution:
That un = eiknx solves the equation βux = λu is proved by insertion. To satisfy the
boundary conditions, kn have to be some mutiple of 2π.
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It can be proved that the weak formulation of the eigenvalue problem (6) is given
by:

Find u ∈ V and λ ∈ C such that c(u, v) = λ(u, v), ∀v ∈ V
with

V = {v ∈ H1(Ω) | v(0) = v(1)}, c(w, v) =

∫ 1

0

βwxv dx, (w, v) =

∫ 1

0

wv dx.

b) Show that the bilinear form c is skew-symmetric, that is

c(w, v) = −c(v, w).

Solution:

c(w, v) = β

∫ 1

0
wxv dx = −β

∫ 1

0
wvx dx+ v(1)u(1)− v(0)u(0)

= −β
∫ 1

0
wvx dx = −c(v, w)

Following the standard Galerkin method, the discrete eigenvalue problem can be
written as

Find uh ∈ Vh ⊂ V and λh ∈ C such that c(uh, v) = λ(uh, v), ∀v ∈ Vh. (7)

c) Let Vh = X1
h with constant h = 1/M . Show that (7) can be written as a linear

system of algebraic equations

Chu = λhMhu,

and find the matrices Ch and Mh.
In particular, explain how to handle the periodic boundary conditions.
Solution:
Let ϕi, i = 0, 1, · · · ,M be the nodal basis functions of X1

h. To account for the periodic
boundary conditions, extend ϕ0 and ϕM to one step outside the interval (0,1), and
notice that ϕ0(x) = ϕM (1+x). Since u0 = uM the numerical solution can be written
as

uh(x) =
M∑
j=1

ujϕj(x) =
M−1∑
j=0

ujϕj(x).

The problem (7) then becomes
M∑
j=1

c(ϕj , ϕi)uj = λh

M∑
j=1

(ϕj , ϕi), i = 1, 2, · · · ,M

Ch,ij = c(ϕj , ϕi) = β

∫ 1

0

∂ϕj

∂x
ϕi dx =


−β/2 j = i− 1

+β/2 j = i+ 1

0 otherwise

Mh,ij = (ϕj , ϕi)uj =


h/6 j = i± 1

4h/6 j = i

0 otherwise
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for i, j = 1, 2, 3, · · · ,M − 1. In addition Ch,1M = −Ch,M1 = −β/2 and Mh,1M =
Mh,M1 = h/6. So the matrices are no longer tridiagonal.


