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Contact during exam:
Anne Kværnø tel. 92663824

Exam in TMA4220

Numerical Solution of Partial Differential Equations Using

Element Methods

Friday December 9, 2011
Time: 15.00 – 19.00

Auxiliary materials: Simple calculator (Hewlett Packard HP30S or Citizen SR-270X)
All printed and hand written material.

Problem 1

Consider the Poisson equation

��u = f in ⌦ 2 R2 (1)
u = g on �

D

@u

@n
= � on �

N

where �
N

[ �
D

= @⌦ is the boundary of the domain ⌦.

a) Establish the weak formulation:

Find �
u 2 V such that a(

�
u, v) = F (v) 8v 2 V (2)

corresponding to the problem above. In particular, identify the bilinear form
a, the linear form F , the function space V , and explain how the solution u of
(1) and the solution �

u of (2) are related.

Comment: If you are unsure about how to deal with inhomogeneous boundary con-

ditions, change them to something you are comfortable with, for example u = 0 on

�
D

, in which case

�
u = u. But this simplification gives a slight reduction of the score

of this point.
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We would like to find an approximation to the so-
lution of (2) by using a finite element method. As
a reference element, we choose an equilateral trian-
gle, with side length h. Use linear, nodal element
functions, with one node in each corner of the ele-
ment.

x

y

h

hh

K

b) Find the three linear shape functions for the element K. Find the elemental
stiffness matrix AK and the elemental load vector bK .

Hint: The area of an equilateral triangle is h2
p
3/4, and the volume of a pyramid is

BH/3, where B is the area of the base and H the height.

Now, consider the Poisson equation
(1) with f = 1 and homogenous
Dirichlet boundary conditions

u = 0 on @⌦.

The domain ⌦ is a regular hexagon,
and each edge is of length 1.
We will solve this problem by the fi-
nite element method, using the finite
elements from b), and with a triangu-
lation based on equilateral triangles,
see the figure.
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c) Show that the finite element system

A
h

u = f
h

,

where A
h

is the stiffness matrix, u the load vector, and u is a vector of the
approximations of the numerical solutions in the nodes, can be written as
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Find ↵, � and �.
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d) Let us change the boundary conditions of (1) to

u = �x on @⌦.

How will you solve this problem using the finite element method above?
Demonstrate the idea by rewriting the first equation (row) of the finite el-
ement system to include contributions from the nonhomogeneous boundary
conditions.

Consider the Poisson problem again, but
this time with domain composed by two
subdomains, separated by the x-axis, and
with different diffusion constants. More
specific, consider

�1 �u = f in ⌦1

�2 �u = f in ⌦2

u = 0 on �1

@u

@n
= � on �2

1
@u

@y
= 2

@u

@y
for y = 0

with 1,2 > 0.

x

y

⌦1, 1

⌦2, 2

�1

�2

,

e) Establish the weak formulation for this problem, and discuss existence and
uniqueness of the solution.

Can the weak formulation be reformulated as a minimization problem? If yes,
which one? Give a reason for your answer.

Problem 2

Consider the problem

0.01 u
xx

+ 2 u
x

= 0, u(0) = 0, u(1) = 1.

This problem is solved by a linear finite element method with nodal basis functions
on a uniform grid, that is V

h

= X1
h

with constant h = 1/M .

a) Show that the finite element method can be expressed as

A
h

u+ C
h

u = f

and find the matrices A
h

, C
h

and the vector f . Here, A
h

represents the diffusion
term and C

h

the advection term.
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The exact and the numerical solution, with M = 40 elements is given in the figure
below.
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b) Explain why the numerical solution oscillates.

How many (equal) elements are needed to avoid oscillations?

c) Explain how we can improve the numerical solution based on linear elements
on a uniform grid, without increasing the number of elements.

Problem 3

Point a) and b) are given half weight.

Consider the one-dimensional eigenvalue problem

�u
x

= �u in ⌦ = (0, 1), u(0) = u(1), (3)

where � is a given constant. Notice the periodic boundary conditions.

a) Verify that the eigenfunctions u
n

and corresponding eigenvalues �
n

,

u
n

(x) = eiknx, �
n

= i�k
n

, with k
n

= 2⇡n, i =
p
�1

satisfy (3) for n = 0,±1,±2, . . .
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It can be proved that the weak formulation of the eigenvalue problem (3) is given
by:

Find u 2 V and � 2 C such that c(u, v) = �(u, v), 8v 2 V

with

V = {v 2 H1(⌦) | v(0) = v(1)}, c(w, v) =

Z 1

0

�w
x

v dx, (w, v) =

Z 1

0

wv dx.

b) Show that the bilinear form c is skew-symmetric, that is

c(w, v) = �c(v, w).

Following the standard Galerkin method, the discrete eigenvalue problem can be
written as

Find u
h

2 V
h

⇢ V and � 2 C such that c(u
h

, v) = �(u
h

, v), 8v 2 V
h

. (4)

c) Let V
h

= X1
h

with constant h = 1/M . Show that (4) can be written as a linear
system of algebraic equations

C
h

u = �
h

M
h

u,

and find the matrices C
h

and M
h

.
In particular, explain how to handle the periodic boundary conditions.




