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This is a supplement to Q: section 4.3. I have also included some slides with an example at
the course website. It might be helpful to use these when you read this note.
Given the prototype problem (no boundary conditions)

−uxx = f(x), a ≤ x ≤ b. (1)

The weak formulation of this problem is

Find u ∈ H1(a, b) such that a(u, v) = F (v), ∀v ∈ H1(a, b) (2)

where

a(u, v) =

∫ b

a
uxvxdx, F (x) =

∫
fvdx.

Next, choose a subspace Vh = span{ϕ1, ϕ2, . . . , ϕNh
} ⊂ H0(a, b). The Galerkin method then

becomes
Find uh ∈ Vh such that a(uh, vh) = F (vh), ∀v ∈ Vh. (3)

or simply

Ãhũ = b̃h, where Ah,i,j = a(ϕj , ϕi) =

∫ b

a

dϕj
dx

dϕi
dx

dx, bh,i = F (ϕi) =

∫ b

a
fφidx.

(4)
NB! We do not expect this system to have a unique solution (why not?)
We will now use Vh = Xr

h, which is defined as follows: Choose a partition Th of the interval
(a, b), that is, choose a = x0 < x1 < · · · < xN < xN < b. Let Kk = [xk−1, xk], hk = xk−xk−1,
and

Xr
h = {vh ∈ C0[a, b] : vh|Kk

∈ Pr, ∀Kk ∈ Th}

where vh|K is the restriction of vh to the element K. The idea is:

a(ϕi, ϕj) =

∫ b

a

dϕj
dx

dϕi
dx

dx =
N∑
k=1

∫
Kk

dϕj
dx

dϕi
dx

dx =
N∑
k=1

aK(ϕi, ϕj) (5)

so if we can find a reasonable representation of the basis functions on each element, we can
calculate the contribution to aij from each element, and then sum over all the elements.
Similar can of course be done for the load vector bi.
In this note we cover:
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(i) How to find a representation of the basis functions restricted to elements.
(ii) How to compute the contributions AKh,ij and b

K
h,i from a given element K.

(iii) How to set up the matrix Ãh and the vector b̃h.
(iv) How to impose boundary conditions.

(i) The basis function restricted to elements (shape functions).

On each element K we need a basis for Pr. There are several options for this of course, but a
quite convenient one is to choose a lagrangian basis, that is, choose r + 1 nodes, and use the
cardinal functions as basis functions. If the boundary points of the elements are included in
the set of nodes, then you get continuity of the basis functions over the elements for free.
In practice, the polynomials are defined on a reference element: K̂ = [0, 1]. On this element,
choose r + 1 distinct nodes ξi, i = 0, 1, · · · , r, where ξ0 = 0 and ξr = 1. The shape functions
on the reference element are given by

Ψα(ξ) =
r∏

β=1,β 6=α

ξ − ξβ
ξα − ξβ

, α = 0, 1, · · · , r, ξ ∈ [0, 1].

We next have to map these shape functions from the reference element K̂ to the physical
element Kk. And now we run into the real nightmare of indices. Let us define a local to global
mapping i = θ(k, α). So α refer to a node ξα on the reference element, k refer to element Kk

on the interval [a, b] and i refer to node xi on [a, b] (puh!). In the following I am going to
use xkα = xi. Notice that xkr = xk+1

0 , the last node on element Kk is the first one on element
Kk+1. The mapping between K̂ and Kk is

x(ξ) = Φk(ξ) = xk0 + hkξ, ξ(x) = Φ−1k (x) =
x− xk0
hk

(6)

where hk = xkr − xk0 is the size of the element. So finally

φi|Kk
(x) = Ψα(Φ−1k (x)), i = θ(k, α), α = 0, 1, . . . , r

defines all the (nonzero) basis functions on the element Kk, and thus the whole space Xr
h.

Notice that this is a nodal or lagrangian basis for Xr
h: To each node xi on [a, b] there is a

corresponding basis function ϕi(x) s.t. ϕi(xj) = δij . Moreover, the support of ϕi (where ϕi(x)
is nonzero) is the elements in which xi is a node.

(ii) Contributions from each element Kk.

The contribution to element Ãh,ij from element Kk is given by

Ãkh,α,β =

∫
Kk

dφj
dx

dφi
dx

dx =
1

hk

∫ 1

0

dΨβ

dξ

dΨα

dξ
dξ, i = θ(k, α), j = θ(k, β).

since
dφi
dx

=
dΨα(Φ−1k (x))

dx
=
∂Ψα

∂ξ
·
dΦ−1k (x)

dx
=

1

hk

dΨα

dξ
, dx = hk dξ.
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Similar

b̃kh,α =

∫
Kk

f(x)φi(x)dx = hk

∫ 1

0
f(Φ−1k (ξ)) Ψα(ξ)dξ.

In practice, the last integrals have to be approximated by some numerical quadrature, e.g.∫ 1

0
g(x)dx ≈

s∑
j=1

wjf(cj)

Using Gauss quadrature as examples, we have

s = 1 : c1 = 1/2, w1 = 1

s = 2 : c1 = (3−
√

3)/6, c2 = (3 +
√

3)/6, w1 = w2 = 1/2

Using this, we get

b̃kh,α ≈ hk
s∑
j=1

wjf(xk0 + cjhk)Ψα(cj).

Strictly speaking, this is a variational crime, a deviation from the variational framework.
Notice that, by using this approach, all the integrals can be done directly on the reference
element, and the result is then mapped to the real element.

(iii) The assembly process

In this case, we collect contributions to the stiffness matrix and the load vector, from each
element kk, see (5). This can most easily be described by the algorithm:

Ãh = 0, b̃h = 0.
for Kk ∈ Th

for α = 0, . . . , r
i = θ(k, α)
for β = 0, . . . , r

j = θ(k, β)

Ãh,ij = Ãh,ij + Ãkα,β
b̃h,i = b̃h,i + b̃kα

end
end

We now have the system of linear equations

Ãhũh = b̃h (7)

where Ãh is singular, so we can expect no unique solution.
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Boundary conditions

By the construction of the basis of Xr
h, our (so far unknown) numerical solution uh ∈ Xr

h can
be written as

uh(x) =

Nh+1∑
i=0

uiϕi(x), u(xi) = ui, i = 0, 1, 2, · · · , Nh + 1,

where Nh + 2 is the total number of nodes. Let us now include boundary conditions on (1).

a) Dirichlet (essential) boundary conditions: Let u(a) = g0 and u(b) = g1, where g0, g1 are
given. Then our numerical solution will be of the form:

uh(x) = g0ϕ0(x) +

Nh∑
i=1

uiϕi(x) + g1ϕNh+1(x)

leaving us with Nh equations to be solved. First, we move what is known, that is the first
column of Ãh times g0 and the last column times g1 to the right hand side. Second, we
remove the corresponding equations, that is the first and the last rows of (7). We are now
left with a solvable system

Ahuh = bh −Ah,:,0 g0 − g1Ah,:,Nh+1

where Ah,:,j refer to column j of the matrix Ãh with the first and last row removed.

b) Neumann (natural) boundary conditions; Let u(a) = 0 and ux(b) = r. This is left as an
exercise!
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