Norwegian University of Science and Technology
Department of Mathematical
Sciences

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods
 Høst 2012

Exercise set 1

1 Consider the problem

$$
-u_{x x}=1, \quad 0<x<1, \quad u(0)=u(1)=0 .
$$

a) Derive the exact solution u.

Solution: By integrating twice, and inserting the boundary conditions, we get

$$
u(x)=\frac{1}{2} x(1-x) .
$$

b) Show by explicit calculations that

$$
\int_{0}^{1} u_{x} v_{x} d x=\int_{0}^{1} v d x
$$

for all sufficiently smooth v satisfying $v(0)=v(1)=0$.
Solution: Choose some arbitrary v satisfying the boundary condition: Then

$$
\int_{0}^{1}\left(u_{x} v_{x}-v\right) d x=\left.u_{x} v\right|_{0} ^{1}-\int_{0}^{1}\left(u_{x x}+1\right) v d x=0 .
$$

c) Compute $J(u)$, where

$$
J(v)=\frac{1}{2} \int_{0}^{1} v_{x}^{2} d x-\int_{0}^{1} v d x
$$

Solution:

$$
J(u)=\frac{1}{2} \int_{0}^{1}\left(\frac{1}{2}-x\right)^{2} d x-\int_{0}^{1} \frac{1}{2} x(1-x) d x=-\frac{1}{24} .
$$

d) Let $w_{1}(x)=a_{1} \sin (\pi x)$. Find the value of the amplitude a_{1} which minimizes $J\left(w_{1}\right)$. How does a_{1} compare with the maximum of the exact solution u ?
Solution: By insertion, we get

$$
J\left(w_{1}\right)=\frac{1}{4} a_{1}^{2} \pi^{2}-\frac{2 a_{1}}{\pi} .
$$

So the minimimum is given by

$$
\frac{\partial J\left(w_{1}\right)}{\partial a_{1}}=\frac{1}{2} a_{1} \pi^{2}-\frac{2}{\pi}=0, \quad \Rightarrow \quad a_{1}=\frac{4}{\pi^{3}} .
$$

and

$$
\begin{aligned}
& \max _{x \in(0,1)} w_{1}=a_{1}=\frac{4}{\pi^{3}} \approx 0.129 \\
& \max _{x \in(0,1)} u=u\left(\frac{1}{2}\right)=\frac{1}{8}=0.125
\end{aligned}
$$

e) Show that $J\left(w_{1}\right)>J(u)$. Is there a big difference?

Solution:

$$
J\left(w_{1}\right)=-\frac{4}{\pi^{4}} \approx-0.04106>-\frac{1}{24} \approx-0.041667
$$

f) Let $\varphi_{i}=\sin ((2 i-1) \pi x), i=1,2,3, \ldots$ These functions are infinitely differentiable, and they all satisfy $\varphi_{i}(0)=\varphi_{i}(1)=0$. Compute

$$
a_{i j}=\int_{0}^{1} \varphi_{j}^{\prime} \varphi_{i}^{\prime} d x \quad \text { and } \quad b_{i}=\int_{0}^{1} \varphi_{i} d x
$$

Solution: We get

$$
a_{i j}=\left\{\begin{array}{ll}
\frac{\pi^{2}}{2}(2 i-1)^{2} & \text { for } i=j \\
0 & \text { otherwise }
\end{array}, \quad b_{i}=\frac{2}{(2 i-1) \pi}\right.
$$

g) Let $V_{N}=\operatorname{span}\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}\right\}$. Set up and solve the problem

$$
\text { Find } w_{N} \in V_{N} \text { such that } \int_{0}^{1} w_{N, x} v_{x} d x=\int_{0}^{1} v d x, \quad \forall v \in V_{N}
$$

Solution: Choose $w_{N}=\sum_{j=1}^{N} \hat{w}_{i} \varphi_{i}$ such that:

$$
\sum_{j=1}^{N} \hat{w}_{j} \int_{0}^{1} \phi_{j}^{\prime} \phi_{i}^{\prime} d x=\int_{0}^{1} \phi_{i} d x, \quad i=1, \ldots, N
$$

or simply $A \hat{\mathbf{w}}=\mathbf{b}$ where the elements of A and b are given in $\mathbf{d})$. But A is a diagonal matrix, so we get

$$
\hat{w}_{i}=\frac{b_{i}}{a_{i i}}=\frac{4}{\pi^{3}(2 i-1)^{3}}, \quad \text { and } \quad w_{N}=\sum_{i=1}^{N} \frac{4}{\pi^{3}(2 i-1)^{3}} \sin ((2 i-1) \pi x)
$$

h) Plot the error $u-w_{N}$ for $N=1,2,3$.

Solution:

2 Given the weak statement:

$$
\begin{equation*}
\text { Find } u \in V \quad \text { s.t. } \quad a(u, v)=F(v), \quad \forall v \in V \tag{1}
\end{equation*}
$$

and the minimization principle:

$$
\begin{equation*}
u=\arg \min _{u \in V} J(v), \quad \text { with } \quad J(v)=\frac{1}{2} a(v, v)-F(v) \tag{2}
\end{equation*}
$$

a) Show that (1) and (2) are equivalent whenever a is bilinear, symmetric and positive definite, and F is linear. State clearly which properties you are using in you arguments.

Solution: The principle(2) implies that $J(u) \leq J(u+v), \forall v \in V$ (V is a linear space).

$$
\begin{align*}
J(u+v) & =\frac{1}{2} a(u+v, u+v)-F(u+v) \tag{Definition}\\
& =\frac{1}{2} a(u, u)-F(u)+\frac{1}{2}(a(u, v)+a(v, u))-F(v)+\frac{1}{2} a(v, v) \\
& =J(u)+(a(u, v)-F(v))+\frac{1}{2} a(v, v) \\
& >J(u)+(a(u, v)-F(v)), \quad \forall v \neq 0 \tag{Positivity}
\end{align*}
$$

(Linearity)
(Symmetry)

So clearly, if (1) is satisfied, then u is a minimizer of J and vice versa.
b) Take $V=\mathbb{R}^{n}$, and just show, by appropriate choice of a and F, that the minimizer $u \in V$ of $J(v)=\frac{1}{2} v^{T} G v-v^{T} b$ for any symmetric, positive definite matrix $G \in \mathbb{R}^{n \times n}$ and $v \in \mathbb{R}^{n}$ satisfies $G u=b$.
Solution: Let $w \in \mathbb{R}^{n}$. Set $a(w, v)=w^{T} G v$ and $F(v)=v^{T} b$. Cleary, a is bilinear $\left(a\left(w_{1}+w_{2}, v\right)=\left(w_{1}+w_{2}\right)^{T} G v=w_{1} G v+w_{2} G v=a\left(w_{1}, v\right)+a\left(w_{2}, v\right)\right.$, etc. Further a is symmetric since $a(w, v)=w^{T} G v=w^{T} G^{T} v=v^{T} G w=$ $a(v, w)$, and finally a is positive definite since $a(v, v)=v^{T} G v>0$ for all $v \neq 0$. So the result of point a) apply, the minimizer u satisfies (1), that is

$$
\begin{array}{rlrl}
u^{T} G v & =v^{T} b, & \forall v \in \mathbb{R}^{n} \\
v^{T} G u & =v^{T} b, & & \forall v \in \mathbb{R}^{n} \\
v^{T}(G u-b) & =0, & \forall v \in \mathbb{R}^{n}
\end{array}
$$

which is satisfied if and only if

$$
G u=b .
$$

3 Write a code for solving the equation

$$
-u_{x x}=x^{4}, \quad 0<x<1, \quad u(0)=0, \quad u(1)=0
$$

using the finite element method with equidistant grid $\left(x_{i}=i h, h=1 / N\right)$, and the basis functions

$$
\varphi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{h}, & \text { for } x_{i-1} \leq x \leq x_{i} \\ \frac{x_{i+1}-x}{h} & \text { for } x_{i} \leq x \leq x_{i+1} \\ 0 & \text { otherwise }\end{cases}
$$

for $i=0,1,2, \ldots, N$. Compare the numerical solution with the exact solution, and plot the error.

Solution: Because of the Dirichlet (essential) boundary conditions, we do not include the basis functions φ_{0} and φ_{N}. We get

$$
\varphi_{i}^{\prime}(x)= \begin{cases}\frac{1}{h} & \text { for } x_{i-1}<x<x_{i} \\ -\frac{1}{h} & \text { for } x_{i}<x<x_{i+1} \\ 0 & \text { otherwise }\end{cases}
$$

that is

$$
a_{i j}=\int_{0}^{1} \varphi_{j}^{\prime} \varphi_{i}^{\prime} d x= \begin{cases}\frac{2}{h}, & i=j, i \neq N \\ -\frac{1}{h}, & i=j+1 \text { or } i=j-1 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\begin{aligned}
b_{i}=\int_{0}^{1} x^{4} \varphi_{i} d x & =\frac{x_{i}^{6}-x_{i-1}^{6}}{6 h}-\frac{x_{i-1}\left(x_{i}^{5}-x_{i-1}^{5}\right)}{5 h}-\frac{x_{i+1}^{6}-x_{i}^{6}}{6 h}+\frac{x_{i+1}\left(x_{i+1}^{5}-x_{i}^{5}\right)}{5 h} \\
& =-\frac{x_{i+1}^{6}-2 x_{i}^{6}+x_{i-1}^{6}}{6 h}+\frac{x_{i+1}^{6}-\left(x_{i-1}+x_{i+1}\right) x_{i}^{5}+x_{i-1}^{6}}{5 h}
\end{aligned}
$$

Solve the system $A \mathbf{u}=b$, and the numerical solution is given by $u_{h}(x)=\sum_{i=1}^{N} u_{i} \varphi_{i}(x)$. Notice that $u_{h}\left(x_{i}\right)=u_{i}$, and u_{h} is piecewise linear, which makes it very easy to plot this function. The exact solution for this problem is $u(x)=x\left(1-x^{5}\right) / 30$.

The plot of the solutions as well as the error is given below.

The MATLAB code for solving the problem is given in Figure 1.

```
N = 8;
h = 1/N;
x = linspace(0,1,N+1)';
A=(2/h)*diag(ones(N-1,1))-(1/h)*(diag(ones(N-2,1),1)+\operatorname{diag}(ones(N-2,1),-1));
i = 2:N;
b = - (x(i+1). - 6-2*x(i). - 6 +x(i-1). - 6)/(6*h) ...
    +(x(i+1).^6 - (x(i-1) +x(i+1)).*x(i). - 5 + x (i-1). - 6)/(5*h);
u = A\b;
```

Figure 1: MATLAB code for problem 3.

