Norwegian University of Science and Technology
Department of Mathematical
Sciences

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods
 Høst 2012

Exercise set 2

51 If you are not familiar with the the Lebesgue spaces $L^{p}(\Omega)$ and the Sobolov spaces $H^{p}(\Omega)$, you should read section 2.3.1 and 2.4.0-2.4.2.

True or false:
a) The set $S=\left\{v \in C^{0}(0,1): v\left(\frac{1}{2}\right)=1\right\}$ is a linear (vector) space.
b) For $X=H_{0}^{1}((0,1)), L(v)=\int_{0}^{1} x v d x$ is a linear functional.
c) For $Z=\mathbb{R},(x, y)_{Z}=|x||y|$ is a valid inner product.
d) The only v in $H^{1}(\Omega)$ for which $|w|_{H^{1}(\Omega)}$ (the H^{1} semi-norm) is zero is $v=0$.
e) The function $v=x^{3 / 4}$ is in $L^{2}((0,1))$; in $H^{1}((0,1))$; in $H^{2}((0,1))$.
f) For $v=e^{-10 x},|v|_{H^{2}((0,1))}=|v|_{H^{1}((0,1))}$.

2 Consider the fourth-order problem:

$$
\begin{gathered}
u_{x x x x}=f \quad \text { in } \Omega=(0,1), \\
u(0)=u_{x}(0)=u(1)=u_{x}(1)=0 .
\end{gathered}
$$

This "biharmonic" equation is relevant to, amongst other applications, the bending of beams.
a) Find a symmetric, positive form a over V and a linear form F such that the solution u of the equation satisfies

$$
a(u, v)=F(v), \forall v \in V .
$$

b) How should V be defined?
c) Do you think that $F(v)=v_{x}\left(\frac{1}{2}\right)$ is a linear, bounded functional on V ?

3 Consider the problem with a discontinuous jump in conductivities:

$$
\begin{array}{ll}
-\kappa^{L} u_{x x}^{L}=f^{L}, & 0<x<\frac{1}{2}, \\
-\kappa^{R} u_{x x}^{R}=f^{R}, & \frac{1}{2}<x<1,
\end{array}
$$

with boundary conditions

$$
\begin{aligned}
u^{L}(0)=0 & \quad u^{R}(1)=0 \\
u^{L}\left(\frac{1}{2}\right) & =u^{R}\left(\frac{1}{2}\right) \\
\kappa^{L} u_{x}^{L}\left(\frac{1}{2}\right) & =\kappa^{R} u_{x}^{R}\left(\frac{1}{2}\right), \quad \text { (continuity of flux). }
\end{aligned}
$$

Here, κ^{L} and κ^{R} are strictly positive. Let $V=\left\{v \in H^{1}((0,1)): v(0)=v(1)=0\right\}$.
Find a and F such that the solution u satisfies

$$
a(u, v)=F(v), \quad \forall v \in V
$$

4 Given the Helmholtz problem

$$
\begin{aligned}
-u_{x x}+\sigma u & =f \text { on }(0,1), \\
u(0) & =u(1)=0 .
\end{aligned}
$$

where $\sigma>0$ is a constant. Set up the weak form for this problem. Show that, when this problem is solved by a Galerkin method, using $V_{h}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{N}$, the discrete problem can be written as

$$
(A+\sigma M) \mathbf{u}=\mathbf{f}
$$

Set up the matrix M for $V_{h}=X_{h}^{1}$ on a uniform grid.

