Norwegian University of Science and Technology
Department of Mathematical
Sciences

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods
 Høst 2012

1 If you are not familiar with the the Lebesgue spaces $L^{p}(\Omega)$ and the Sobolov spaces $H^{p}(\Omega)$, you should read section 2.3.1 and 2.4.0-2.4.2.

True or false:
a) The set $S=\left\{v \in C^{0}(0,1): v\left(\frac{1}{2}\right)=1\right\}$ is a linear (vector) space.

Solution: False. If $v_{1}, v_{2} \in S$, then $v_{1}+v_{2} \notin S$ since $\left(v_{1}+v_{2}\right)\left(\frac{1}{2}\right)=1$.
b) For $X=H_{0}^{1}((0,1)), L(v)=\int_{0}^{1} x v d x$ is a linear functional.

Solution: True: $L: X \rightarrow \mathbb{R}$ and $L\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} L\left(v_{1}\right)+\alpha_{2} L\left(v_{2}\right)$, $\forall \alpha_{1}, \alpha_{2} \in \mathbb{R}$ and $v_{1}, v_{2} \in X$.
c) For $Z=\mathbb{R},(x, y)_{Z}=|x||y|$ is a valid inner product.

Solution: False: $(x, y)_{Z}$ is not bilinear. E.g $\left(x_{1}+x_{2}, y\right)_{Z}=\left|x_{1}+x_{2}\right||y| \neq$ $\left|x_{1}\right||y|+\left|x_{2}\right||y|$ if x_{1} and x_{2} has opposite signs.
d) The only v in $H^{1}(\Omega)$ for which $|w|_{H^{1}(\Omega)}$ (the H^{1} semi-norm) is zero is $v=0$.

Solution: False: Try $w=1$.
e) The function $v=x^{3 / 4}$ is in $L^{2}((0,1))$; in $H^{1}((0,1))$; in $H^{2}((0,1))$.

Solution: We have

$$
\begin{aligned}
\|v\|_{L^{2}(\Omega)}^{2} & =\int_{0}^{1}\left(x^{3 / 2}\right)^{2} d x=\frac{2}{3}<\infty \\
\left\|v_{x}\right\|_{L^{2}(\Omega)}^{2} & =\int_{0}^{1} v_{x}^{2} d x=\frac{9}{8}<\infty \\
\left\|v_{x x}\right\|_{L^{2}(\Omega)} & =\int_{0}^{1} v_{x x}^{2} d x \nless \infty
\end{aligned}
$$

So $v \in L_{2}((0,1))$ and $v \in H^{1}((0,1))$, but not in $H^{2}((0,1))$.
f) For $v=e^{-10 x},|v|_{H^{2}((0,1))}=|v|_{H^{1}((0,1))}$.

Solution: False.

2 Consider the fourth-order problem:

$$
\begin{gathered}
u_{x x x x}=f \quad \text { in } \Omega=(0,1) \\
u(0)=u_{x}(0)=u(1)=u_{x}(1)=0 .
\end{gathered}
$$

This "biharmonic" equation is relevant to, amongst other applications, the bending of beams.
a) Find a symmetric, positive form a over V and a linear form F such that the solution u of the equation satisfies

$$
a(u, v)=F(v), \forall v \in V
$$

Solution: As always, choose a test function $v \in V$, integrate over the domain, and apply partial integration:
$\int_{0}^{1} u_{x x x x} v d x=\left.u_{x x x} v\right|_{0} ^{1}-\int u_{x x x} v_{x} d x=\left.u_{x x x} v\right|_{0} ^{1}-\left.u_{x x} v_{x}\right|_{0} ^{1}+\int_{0}^{1} u_{x x} v_{x x} d x=\int_{0}^{1} f v d x$.
The two boundary terms disappear if $v(0)=v(1)=v_{x}(0)=v_{x}(1)=0$, so we can use $a(u, v)=\int_{0}^{1} u_{x x} v_{x x} d x$ and $F(v)=\int_{0}^{1} f v d x$. Further, a is clearly symmetric, and it is positive definite since $a(v, v)=\int_{0}^{1} v_{x x}^{2} d x \geq 0$, and $a(v, v)=0$ only if $v_{x x} \equiv 0$ which implies $v \equiv 0$ because of the boundary conditions.
b) How should V be defined?

Solution: $\quad V=H_{0}^{2}((0,1))=\left\{v \in H^{2}((0,1)): v(0)=v(1)=v_{x}(0)=v_{x}(1)=0\right\}$.
c) Do you think that $F(v)=v_{x}\left(\frac{1}{2}\right)$ is a linear, bounded functional on V ?

Solution: Yes, since

$$
\begin{array}{rlrl}
F(v)=v_{x}\left(\frac{1}{2}\right) & =\int_{0}^{1 / 2} v_{x x}(x) d x & \text { since } v_{x}(0)=0 \\
|F(v)| \leq \int_{0}^{1 / 2}\left|v_{x x}(x)\right| \cdot 1 d x & \leq\left(\int_{0}^{1 / 2} v_{x x}^{2} d x\right)^{1 / 2}\left(\int_{0}^{1 / 2} 1^{2} d x\right)^{1 / 2} & \text { Cauchy-Schwartz } \\
& =\frac{\sqrt{2}}{2}\left(\int_{0}^{1 / 2} v_{x x}^{2} d x\right)^{1 / 2} \leq \frac{\sqrt{2}}{2}\left(\int_{0}^{1} v_{x x}^{2} d x\right)^{1 / 2} \\
& =\frac{\sqrt{2}}{2}|v|_{H^{2}((0,1))} \leq \frac{\sqrt{2}}{2}\|v\|_{H^{2}((0,1))} &
\end{array}
$$

3 Consider the problem with a discontinuous jump in conductivities:

$$
\begin{array}{ll}
-\kappa^{L} u_{x x}^{L}=f^{L}, & 0<x<\frac{1}{2} \\
-\kappa^{R} u_{x x}^{R}=f^{R}, & \frac{1}{2}<x<1
\end{array}
$$

with boundary conditions

$$
\begin{aligned}
u^{L}(0)=0, & u^{R}(1)=0 \\
u^{L}\left(\frac{1}{2}\right) & =u^{R}\left(\frac{1}{2}\right) \\
\kappa^{L} u_{x}^{L}\left(\frac{1}{2}\right) & =\kappa^{R} u_{x}^{R}\left(\frac{1}{2}\right), \quad \text { (continuity of flux). }
\end{aligned}
$$

Here, κ^{L} and κ^{R} are strictly positive. Let $V=\left\{v \in H^{1}((0,1)): v(0)=v(1)=0\right\}$.
Find a and F such that the solution u satisfies

$$
a(u, v)=F(v), \quad \forall v \in V
$$

Solution: Choose some $v \in V$. Then

$$
\begin{aligned}
&-\int_{0}^{1 / 2} \kappa^{L} u_{x x}^{L} v d x-\int_{1 / 2}^{1} \kappa^{R} u_{x x}^{R} v d x=-\left.\kappa^{L} u_{x} v\right|_{0} ^{1 / 2}+\int_{0}^{1 / 2} \kappa^{L} u_{x}^{L} v_{x} d x-\left.\kappa^{R} u_{x}^{R} v\right|_{1 / 2} ^{1}+\int_{1 / 2}^{1} \kappa^{R} u_{x}^{R} v d x \\
&=\left(-\kappa^{L} u_{x}^{L}\left(\frac{1}{2}\right)+\kappa^{R} u_{x}^{R}\left(\frac{1}{2}\right)\right) v\left(\frac{1}{2}\right)+\int_{0}^{1 / 2} \kappa^{L} u_{x}^{L} v_{x} d x+\int_{1 / 2}^{1} \kappa^{R} u_{x}^{R} v_{x} d x \\
&= \int_{0}^{1 / 2} f^{L} v d x+\int_{1 / 2}^{1} f^{R} v d x
\end{aligned}
$$

The first term of the second line is zero because of the continuity of flux condition. So we can choose

$$
a(u, v)=\int_{0}^{1 / 2} \kappa^{L} u_{x}^{L} v_{x} d x+\int_{1 / 2}^{1} \kappa^{R} u_{x}^{R} v_{x} d x, \quad F(v)=\int_{0}^{1 / 2} f^{R} v d x+\int_{1 / 2}^{1} f^{L} v d x
$$

4 Given the Helmholtz problem

$$
\begin{aligned}
-u_{x x}+\sigma u & =f \text { on }(0,1), \\
u(0) & =u(1)=0 .
\end{aligned}
$$

where $\sigma>0$ is a constant. Set up the weak form for this problem. Show that, when this problem is solved by a Galerkin method, using $V_{h}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{N}$, the discrete problem can be written as

$$
(A+\sigma M) \mathbf{u}=\mathbf{f}
$$

Set up the matrix M for $V_{h}=X_{h}^{1}$ on a uniform grid.

Solution: Multiply by the equation by a test function v, integrate over the domain $(0,1)$, use partial integration and get rid of the boundary terms by require $v(0)=$ $v(1)=0$. The the weak formualtion becomes:

$$
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \int_{0}^{1} v_{x} u_{x} d x+\sigma \int_{0}^{1} u v d x=\int_{0}^{1} f v d x, \quad \forall v \in H_{0}^{1}(0,1) \text {. }
$$

Choose $V_{h}=\operatorname{span}\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}\right\}$, let our unknown approximation be written as

$$
u_{h}(x)=\sum_{j=1}^{N} u_{j} \varphi_{j}(x)
$$

where the coefficients u_{j} is found from

$$
\sum_{j=1}^{N} \int_{0}^{1}\left(\frac{d \varphi_{j}}{d x} \frac{d \varphi_{i}}{d x}\right) d x+\sigma \sum_{j=1}^{N} \int_{0}^{1}\left(\varphi_{j} \varphi_{i}\right) d x=\int_{0}^{1}\left(f \varphi_{i}\right) d x, \quad i=1,2, \cdots, N
$$

This is a linear system of equations

$$
A \mathbf{u}+\sigma M \mathbf{u}=\mathbf{f}
$$

where

$$
\left(A_{i, j}=\int_{0}^{1}\left(\frac{d \varphi_{j}}{d x} \frac{d \varphi_{i}}{d x}\right) d x, \quad M_{i, j}=\int_{0}^{1}\left(\varphi_{j} \varphi_{i}\right) d x \quad \text { and } \quad f_{i}=\int_{0}^{1}\left(f \varphi_{i}\right) d x\right.
$$

Let $V_{h}=X_{h}^{1}$ on a uniform grid, so that $h=1 / N$ and $x_{i}=i h, i=0,1, \ldots, N$.

The non-zeros elements of the stiffness matrix A and the mass matrix M is

$$
\begin{aligned}
A_{i, i} & =\int_{x_{i-1}}^{x_{i+1}}\left(\frac{d \varphi_{i}}{d x}\right) d x=\frac{2}{h}, & A_{i, i+1}=\int_{x_{i}}^{x_{i+1}} \frac{d \varphi_{i+1}}{d x} \frac{d \varphi_{i}}{d x} d x=-\frac{1}{h}=A_{i+1, i} \\
M_{i, i} & =\int_{x_{i-1}}^{x_{i+1}} \varphi_{i}^{2} d x=\frac{2}{3} h, & M_{i, i+1}=\int_{x_{i}}^{x_{i+1}} \varphi_{i+1} \varphi_{i} d x=\frac{1}{6} h=M_{i+1, i} .
\end{aligned}
$$

All the other elements are 0. So

$$
M=\frac{h}{6}\left(\begin{array}{ccccc}
4 & 1 & & & 0 \\
1 & 4 & 1 & & \\
& 1 & 4 & \ddots & \\
& & \ddots & \ddots & 1 \\
0 & & & 1 & 4
\end{array}\right) \in \mathbb{R}^{(N-1) \times(N-1)}
$$

