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Exercise set 2

1 If you are not familiar with the the Lebesgue spaces Lp(Ω) and the Sobolov spaces
Hp(Ω), you should read section 2.3.1 and 2.4.0-2.4.2.

True or false:

a) The set S =
{

v ∈ C0(0, 1) : v
(

1
2

)

= 1
}

is a linear (vector) space.
Solution: False. If v1, v2 ∈ S, then v1 + v2 /∈ S since (v1 + v2)

(

1
2

)

= 1.

b) For X = H1
0 ((0, 1)) , L(v) =

∫ 1
0 xvdx is a linear functional.

Solution: True: L : X → R and L(α1v1 + α2v2) = α1L(v1) + α2L(v2),
∀α1, α2 ∈ R and v1, v2 ∈ X.

c) For Z = R, (x, y)Z = |x| |y| is a valid inner product.
Solution: False: (x, y)Z is not bilinear. E.g (x1 + x2, y)Z = |x1 + x2| |y| 6=
|x1| |y|+ |x2| |y| if x1 and x2 has opposite signs.

d) The only v in H1 (Ω) for which |w|H1(Ω) (the H1 semi-norm) is zero is v = 0.
Solution: False: Try w = 1.

e) The function v = x3/4 is in L2 ((0, 1)) ; in H1((0, 1)); in H2 ((0, 1)).
Solution: We have

‖v‖2L2(Ω) =

∫ 1

0

(

x3/2
)2

dx =
2

3
< ∞

‖vx‖2L2(Ω) =

∫ 1

0
v2xdx =

9

8
< ∞

‖vxx‖L2(Ω) =

∫ 1

0
v2xxdx 6< ∞

So v ∈ L2 ((0, 1)) and v ∈ H1 ((0, 1)), but not in H2 ((0, 1)).

f) For v = e−10x, |v|H2((0,1)) = |v|H1((0,1)) .
Solution: False.

2 Consider the fourth-order problem:

uxxxx = f in Ω = (0, 1) ,

u(0) = ux(0) = u(1) = ux(1) = 0.

This “biharmonic” equation is relevant to, amongst other applications, the bending
of beams.
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a) Find a symmetric, positive form a over V and a linear form F such that the
solution u of the equation satisfies

a(u, v) = F (v), ∀v ∈ V.

Solution: As always, choose a test function v ∈ V , integrate over the domain,

and apply partial integration:

∫ 1

0
uxxxxvdx = uxxxv|10−

∫

uxxxvxdx = uxxxv|10−uxxvx|10+
∫ 1

0
uxxvxxdx =

∫ 1

0
fvdx.

The two boundary terms disappear if v(0) = v(1) = vx(0) = vx(1) = 0, so we can

use a(u, v) =
∫ 1
0 uxxvxxdx and F (v) =

∫ 1
0 fvdx. Further, a is clearly symmetric,

and it is positive definite since a(v, v) =
∫ 1
0 v2xxdx ≥ 0, and a(v, v) = 0 only if

vxx ≡ 0 which implies v ≡ 0 because of the boundary conditions.

b) How should V be defined?
Solution: V = H2

0 ((0, 1)) =
{

v ∈ H2 ((0, 1)) : v(0) = v(1) = vx(0) = vx(1) = 0
}

.

c) Do you think that F (v) = vx
(

1
2

)

is a linear, bounded functional on V ?
Solution: Yes, since

F (v) = vx

(

1

2

)

=

∫ 1/2

0
vxx (x) dx since vx (0) = 0

|F (v)| ≤
∫ 1/2

0
|vxx(x)| · 1dx ≤

(

∫ 1/2

0
v2xxdx

)1/2(
∫ 1/2

0
12dx

)1/2

Cauchy-Schwartz

=

√
2

2

(

∫ 1/2

0
v2xxdx

)1/2

≤
√
2

2

(∫ 1

0
v2xxdx

)1/2

=

√
2

2
|v|H2((0,1)) ≤

√
2

2
‖v‖H2((0,1)).

3 Consider the problem with a discontinuous jump in conductivities:

−κLuLxx = fL, 0 < x <
1

2
,

−κRuRxx = fR,
1

2
< x < 1,

with boundary conditions

uL (0) = 0, uR (1) = 0,

uL
(

1
2

)

= uR
(

1
2

)

,

κLuLx
(

1
2

)

= κRuRx
(

1
2

)

, (continuity of flux).

Here, κL and κR are strictly positive. Let V =
{

v ∈ H1 ((0, 1)) : v(0) = v(1) = 0
}

.
Find a and F such that the solution u satisfies

a (u, v) = F (v) , ∀v ∈ V.

October 8, 2012 Page 2 of 4



Exercise set 2

Solution: Choose some v ∈ V . Then

−
∫ 1/2

0
κLuLxxvdx−

∫ 1

1/2
κRuRxxvdx = −κLuxv|1/20 +

∫ 1/2

0
κLuLxvxdx− κRuRx v|11/2 +

∫ 1

1/2
κRuRx vdx

=

(

−κLuLx

(

1

2

)

+ κRuRx

(

1

2

))

v

(

1

2

)

+

∫ 1/2

0
κLuLx vxdx+

∫ 1

1/2
κRuRx vxdx

=

∫ 1/2

0
fLvdx+

∫ 1

1/2
fRvdx

The first term of the second line is zero because of the continuity of flux condition.

So we can choose

a(u, v) =

∫ 1/2

0
κLuLxvxdx+

∫ 1

1/2
κRuRx vxdx, F (v) =

∫ 1/2

0
fRvdx+

∫ 1

1/2
fLvdx.

4 Given the Helmholtz problem

−uxx + σu = f on (0, 1) ,

u(0) = u(1) = 0.

where σ > 0 is a constant. Set up the weak form for this problem. Show that, when
this problem is solved by a Galerkin method, using Vh = span {φi} N

i=1, the discrete
problem can be written as

(A+ σM)u = f .

Set up the matrix M for Vh = X1
h on a uniform grid.

Solution: Multiply by the equation by a test function v, integrate over the domain

(0, 1), use partial integration and get rid of the boundary terms by require v(0) =
v(1) = 0. The the weak formualtion becomes:

Find u ∈ H1
0 (Ω) such that

∫ 1

0
vxuxdx+ σ

∫ 1

0
uvdx =

∫ 1

0
fvdx, ∀v ∈ H1

0 (0, 1).

Choose Vh = span{ϕ1, ϕ2, . . . , ϕN}, let our unknown approximation be written as

uh(x) =

N
∑

j=1

uj ϕj(x),

where the coefficients uj is found from

N
∑

j=1

∫ 1

0

(

dϕj

dx

dϕi

dx

)

dx+ σ
N
∑

j=1

∫ 1

0
(ϕj ϕi)dx =

∫ 1

0
(f ϕi)dx, i = 1, 2, · · · , N.

This is a linear system of equations

Au+ σMu = f
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where

(Ai,j =

∫ 1

0

(

dϕj

dx

dϕi

dx

)

dx, Mi,j =

∫ 1

0
(ϕj ϕi)dx and fi =

∫ 1

0
(fϕi)dx.

Let Vh = X1
h on a uniform grid, so that h = 1/N and xi = ih, i = 0, 1, . . . , N .

xi−2 xi−1 xi xi+1 xi+2

ϕi−1 ϕi ϕi+1

h h h h

The non-zeros elements of the stiffness matrix A and the mass matrix M is

Ai,i =

∫ xi+1

xi−1

(

dϕi

dx

)

dx =
2

h
, Ai,i+1 =

∫ xi+1

xi

dϕi+1

dx

dϕi

dx
dx = −1

h
= Ai+1,i

Mi,i =

∫ xi+1

xi−1

ϕ2
i dx =

2

3
h, Mi,i+1 =

∫ xi+1

xi

ϕi+1ϕidx =
1

6
h = Mi+1,i.

All the other elements are 0. So

M =
h

6
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1 4
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0 1 4

















∈ R
(N−1)×(N−1).
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