Norwegian University of Science and Technology
Department of Mathematical
Sciences

TMA4220 Numerical
 Solution of Partial Differential Equations Using Element Methods Fall 2012

Exercise set 5

1 Given the equation:

$$
\begin{aligned}
u_{t} & =u_{x x}+\beta u, \quad 0<x<1 \\
\frac{\partial u}{\partial n}(0, t) & =0, \quad u(1, t)=0 \\
u(x, 0) & =\cos \left(\frac{\pi}{2} x\right)
\end{aligned}
$$

and β is some constant
a) Derive the exact solution for the equation.
b) Set up the weak formulation of the problem.
c) Write a MATLAB code to solve this problem. In space, use $V_{h}=X_{h}^{1}$ and a uniform grid. In time, try all three schemes: Forward and backward Euler, as well as Crank-Nicolson. Experiment with different stepsizes, and compare your numerical results with the exact solution.

2 Quarteroni Chapter 5, Exercise 2.
In b), no convergence analysis is required.

3 For those of you who have taken the course Numerical Mathematics or something equivalent:

Write down the set of fully discrete equations in the case of solving the semidiscretized system

$$
M_{h} \dot{\mathbf{u}}(t)+A_{h} \mathbf{u}(t)=\mathbf{f}(t)
$$

(Q: p.121, last line), by
a) A second order Adams-Bashforth scheme
b) A second order Adams-Moulton scheme
c) A second order Backward-Differentiation scheme

4 Problem 1-6 in the note Spectra of the continuous and discrete Laplace operator by Einar Rønquist.

