Exercise 5 , problem 2 ($Q, c h, 5$, ex. 2)
(1) $u_{t}-\left(\alpha u_{x}\right)_{x}-\beta u=0$ on $0<x<1, t>0$

$$
\begin{array}{ll}
u=u_{0}(x) & \text { for } t=0 \\
u=\eta & \text { for } x=0 \\
\alpha u_{x}+\gamma u=0 & \text { for } x=1
\end{array}
$$

Parameters: $\alpha=\alpha(x), \beta, \gamma, \eta \in \mathbb{R}$ (constants), $\beta>0$
For simplicity, l assume $2=0$ in the following.
The generalization to $\eta^{*} \eta_{0}=0$ is trivial, and left to you
a). Weak formulation:

$$
\begin{aligned}
& \text { For each } t>0 \text { fince } u(t) \in V \text { s.t } \\
& \qquad \int_{0}^{1} u_{t} \cdot v d x+a(u(t), v)=0, \forall v \in V \\
& \text { where } V=\left\{v \in H^{y}(0,1) ; v(0)=0\right\} \\
& \text { and } a(u, v)=\int_{0}^{1} \alpha \cdot u_{x} \cdot v_{x} d x-\beta \int_{0}^{1} u \cdot v d x+\gamma u(1) \cdot v(1)
\end{aligned}
$$

aide with $u(0)=u_{0}$.

This has a unique solution (Q, p. 120-121) if
$u_{0} \in L^{2}(\Omega)$ ance a is bilinear, continuous and Featly coercive:

Bilinear: Obvious continuous: $\exists M>0$ s.t. $|a(u, v)| \leqslant M \cdot\|u\|_{v} \cdot\|w\|_{v}, \forall u, v \in V$ We have
$|a(u, v)| \leqslant 1 \int_{0}^{1} \alpha u_{x} v_{x} d x|+|\beta|| \int_{0}^{1} u \cdot v d x|+|\gamma| \cdot| u(1)|\cdot| v(1) \mid$.
Here, let $\alpha_{1}=\max _{0<x<1}|\alpha(x)|$,

$$
\begin{aligned}
\quad \int_{0}^{1} \alpha u_{x} v_{x} d x / & \leqslant \alpha_{1} \cdot \int_{0}^{1} u_{x} \cdot v_{x} d x \leqslant \alpha_{1} \cdot\left(\int_{0}^{1} u_{x}^{2} d x\right)^{1 / 2} \cdot\left(\int_{0}^{1} w_{x}^{2} d x\right)^{1 / 2} \\
& \leqslant \alpha_{1} \cdot\|u\|_{v} \cdot\|v\|_{v}
\end{aligned}
$$

similar: flat

$$
/ \int_{0}^{1} u \cdot v d x / \leqslant\|u\|_{v} \cdot\|v\|_{v}
$$

Ance

$$
|u(1)|=1 \int_{0}^{1} u_{x} \cdot 1 d x \mid \leqslant\left(\int_{0}^{1} u_{x}^{2} d x\right)^{1 / 2}\left(\int_{0}^{1} f_{d x}^{2}\right)^{1 / 2} \leqslant\|u\|_{v}
$$ using $u(0)=0$.

We conclude that

$$
\begin{aligned}
& |a(u, v)| \leqslant\left(\alpha_{q}+|\beta|+\mid \gamma 1\right) \cdot\|u\|_{v} \cdot\|v\|_{v}, \forall u, v \in V \\
& \text { if } 1 \alpha 1<\alpha_{0} \quad\left(\alpha \in \alpha^{\infty}(0,1)\right) \\
& \text { What coercivity: We assume that } \alpha \geqslant \alpha_{0}>0 \text {, on (} 0,1 \text {) } \\
& \text { and } \gamma>0 \text {. Then } \\
& a(v, v)=\int_{0}^{1} \alpha v_{x}^{2} d x-\beta \int_{0}^{1} v^{2} d x+\gamma v(1)^{2} \\
& \Rightarrow \alpha_{0} \int_{v_{x}^{2}}^{2} d x-\beta \int_{0}^{1} v^{2} d x \\
& =\alpha_{0} \int_{0}^{1}\left(v_{x}^{2}+v^{2}\right) d x-\left(\alpha_{0}+\beta\right) \int_{0}^{1} v^{2} d x \\
& =\alpha_{0} / / v \|_{v}^{2}-\left(\alpha_{0}+\beta\right) / / v / L_{2}^{2}(0,1) \\
& \text { Thus by choosing } \lambda>\alpha_{0}+\beta \text { the weak coercivity } \\
& \text { condition is proved satisfied, and we have a } \\
& \text { unique solution. }
\end{aligned}
$$

b) The semidiscrete problem is

$$
\int \frac{\partial}{\partial t} u_{n} \cdot v_{n} d x+a\left(u_{n}, v_{n}\right)=0, \forall v_{n} \in v_{n}
$$

once $u_{n}=u_{n}(t)$.
Let $v_{n}=u_{n}(t)$ (for a fixed t). Then

$$
\int \frac{\partial}{\partial t} u_{n} u_{n} d x=\frac{1}{2} \frac{d}{t e r}\left\|u_{n}\right\| L_{L}^{2}(0,1)
$$

Further

$$
a\left(u_{n}, u_{n}\right)=\int_{0}^{1} \alpha u_{n, x}^{2} d x-\beta \int_{0}^{1} u_{h}^{2} d x+\gamma u_{n+1}^{2}
$$

assuming Lagrangian basis functions.

$$
\begin{aligned}
\frac{1}{2} \frac{\partial}{\partial t}\left\|u_{n}\right\|_{L^{2}(0,1)}^{2}+\alpha_{0}\left\|u_{n, x}\right\|_{L^{2}(0,1)}^{2} & \leqslant \beta \cdot\left\|u_{h}\right\|_{L^{2}(\Omega)}^{2}-\gamma u_{N+1}^{2} \\
& \leqslant \beta\left\|u_{n}\right\|_{L}^{2}(\Omega) \text { if } \gamma \geqslant 0
\end{aligned}
$$

Since $\alpha_{0}\left\|u_{h, x}\right\|_{L}^{2}(0,1)>0$ we get

$$
\left\|u_{n}(t)\right\|_{L^{2}(0,1)}^{2} \leqslant\left\|u_{n}(0)\right\|_{L^{2}(0,1)}^{2} \cdot e^{2 \beta t}, t \geqslant 0
$$

(There may be better solutions!)
c) Let $u_{n}(t)=\sum_{i=1}^{N+1} u_{i}(t) \cdot \varphi_{i}(x)$

Then the discrete formulation is
$M \cdot \frac{\partial \underline{u}}{\partial t}+A \underline{u}-\beta^{M} \underline{u}=0$
Where $\quad M_{i j}=\int_{0}^{1} \varphi_{i} \varphi_{j} d x, \quad A_{i j}=\int_{0}^{1} \alpha(x) \varphi_{i, x} \varphi_{j, x} d x$
The explicit Filer is now
$M \frac{\underline{u}^{k+1}-\underline{u}^{k}}{\Delta t}+A \underline{u}^{k}-\beta M \underline{u}^{k}=0$
or
$\underline{u}^{k+1}=\underline{u}^{k}-\Delta t M^{-1} A \underline{u}^{k}+\Delta t \cdot \beta \underline{u}^{k}=C \cdot \underline{u}^{k}$
We have not really discussed stability in this case. Since $\beta>0$, we assume some growth. In fact, we will assume this to be stable if
$|\lambda(c)| \leqslant 1+\Delta t \cdot x \quad$ for some $x>0$
Ancethes is true if $0<\Delta t<-2 \lambda_{i}$.
Where λ_{i} are the eigenvalues of $M^{-1} A$, and $\gamma=\beta$.

