Norwegian University of Science and Technology
Department of Mathematical
Sciences

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods
 Fall 2012

Exercise set 5

1 Given the equation:

$$
\begin{aligned}
u_{t} & =u_{x x}+\beta u, \quad 0<x<1 \\
\frac{\partial u}{\partial n}(0, t) & =0, \quad u(1, t)=0, \\
u(x, 0) & =\cos \left(\frac{\pi}{2} x\right),
\end{aligned}
$$

and β is some constant.
a) Derive the exact solution for the equation.

Solution:

$$
u(x, t)=e^{\left(-\frac{\pi^{2}}{4}+\beta\right) t} \cos \left(\frac{\pi}{2} x\right)
$$

b) Set up the weak formulation of the problem.

Solution: Multiply the equation by a test function $v(x)$, integrate over $\Omega=(0,1)$:

$$
\int_{0}^{1} \frac{\partial u}{\partial t} v d x=-\int_{0}^{1} u_{x} v_{x} d x+\left.\right|_{0} ^{1} u_{x} v+\beta \int_{0}^{1} u v d x
$$

Let $V=\left\{v \in H^{1}(0,1): v(1)=0\right\}$. Then we get
For each $t>0$ find $u(t) \in V$ such that $\quad \int_{0}^{1} \frac{\partial u}{\partial t} v d x+a(u, v)=0, \quad \forall v \in V$,
where $a(u, v)=\int_{0}^{1} u_{x} v_{x} d x-\beta \int_{0}^{1} u v d x$.
c) Write a MATLAB code to solve this problem. In space, use $V_{h}=X_{h}^{1}$ and a uniform grid. If time, try all three schemes: Forward and backward Euler, as well as Crank-Nicolson. Experiment with different stepsizes, and compare your numerical results with the exact solution.
Solution: The FEM solution, using $V_{h}=X_{h}^{1}$ with constants stepsize $h=1 / N$ becomes

$$
M_{h} \frac{\partial \mathbf{u}_{h}}{\partial t}=-A_{u} \mathbf{u}_{h}+\beta M_{h} \mathbf{u}_{h}
$$

with

$$
M_{h}=\frac{h}{6}\left(\begin{array}{cccc}
2 & 1 & & \\
1 & 4 & \ddots & \\
& \ddots & \ddots & 1 \\
& & 1 & 4
\end{array}\right), \quad A_{h}=\frac{1}{h}\left(\begin{array}{cccc}
1 & -1 & & \\
-1 & 2 & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right)
$$

One step of Crank-Nicolsons method becomes

$$
M_{h} \frac{1}{\Delta t}\left(\mathbf{u}_{h}^{n+1}-\mathbf{u}_{h}^{n}\right)=\frac{1}{2}\left(-A_{h}+\beta M_{h}\right)\left(\mathbf{u}_{h}^{n+1}+\mathbf{u}_{h}^{n}\right) .
$$

The matlab coding and experimentation is left for you.

2 Quarteroni Chapter 5, Exercise 2.
In b), no convergence analysis is required.

3 For those of you who have taken the course Numerical Mathematics or something equivalent:
Write down the set of fully discrete equations in the case of solving the semidiscretized system

$$
M_{h} \dot{\mathbf{u}}(t)+A_{h} \mathbf{u}(t)=\mathbf{f}(t)
$$

(Q: p.121, last line), by
a) A second order Adams-Bashforth scheme
b) A second order Adams-Moulton scheme
c) A second order Backward-Differentiation scheme

Solution: For simplicity, let $\mathbf{F}_{n}=A_{h} \mathbf{u}_{h}^{n}+\mathbf{f}\left(t_{n}\right)$, where $t_{n}=t_{0}+n \Delta t$.
Adams-Bashforth:

$$
M_{h}\left(\mathbf{u}_{h}^{n+1}-\mathbf{u}_{h}^{n}\right)=\frac{\Delta t}{2}\left(3 \mathbf{F}_{n}-\mathbf{F}_{n-1}\right) .
$$

Adams-Moulton (coincide with the Crank-Nicolson scheme)

$$
M_{h}\left(\mathbf{u}_{h}^{n+1}-\mathbf{u}_{h}^{n}\right)=\frac{\Delta t}{2}\left(\mathbf{F}_{n+1}+\mathbf{F}_{n}\right)
$$

BDF:

$$
M_{h}\left(\frac{3}{2} \mathbf{u}_{h}^{n+1}-2 \mathbf{u}_{h}^{n}+\frac{1}{2} \mathbf{u}_{h}^{n-1}\right)=\Delta t \mathbf{F}_{n+1}
$$

4 Problem 1-6 in the note Spectra of the continuous and discrete Laplace operator by Einar Rønquist.
Solution:

1. From the definition of eigenvectors and eigenvalues, we have that

$$
M_{h} \mathbf{u}_{j}=\lambda_{j}\left(M_{h}\right) \mathbf{u}_{j}, \quad A_{h} \mathbf{u}_{j}=\lambda_{j}\left(A_{h}\right) \mathbf{u}_{j}
$$

where $\lambda_{j}(\cdot)$ are the eigenvalues of M_{h} and A_{h} respectively. We know that the eigenvectors are the same in this case (not in general true!). But then

$$
M_{h}^{-1} A_{h} \mathbf{u}_{j}=\lambda_{j}\left(A_{h}\right) M_{h}^{-1} \mathbf{u}_{j}=\frac{\lambda_{j}\left(A_{h}\right)}{\lambda_{j}\left(M_{h}\right)} \mathbf{u}_{j}
$$

so $\lambda_{j}\left(M_{h}^{-1} A_{h}\right)=\lambda_{j}\left(A_{h}\right) / \lambda_{j}\left(M_{h}\right)$.
2. From the note, we know that the eigenvalues of the continuous operator is $j^{2} \pi^{2}$. We also know that

$$
\lambda_{j}\left(M_{h}^{-1} A_{h}\right)=\frac{6}{h^{2}} \frac{1-\cos (\pi j h)}{2+\cos (\pi j h)}=j^{2} \pi^{2}+\frac{1}{12} \pi^{4} j^{4} h^{2}+\cdots .
$$

So the approximation is of order 2.
For the second question:

$$
\frac{6}{h^{2}} \frac{1-\cos (\pi j h)}{2+\cos (\pi j h)}>j^{2} \pi^{2} \quad \text { for } j=1,2, \cdots, N
$$

since

$$
6(1-\cos (x))+x^{2}(2+\cos (x))>0 \quad \text { for all } x \in(0, \pi)
$$

3. To solve the system exactly, you need N iterations. If you are happy with some approximation, use the error bound

$$
\left\|\mathbf{e}_{k}\right\|_{M_{h}} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}\left\|\mathbf{e}_{0}\right\|_{M_{h}}
$$

where $\mathbf{e}_{k}=\mathbf{z}^{k}-\mathbf{z}^{*},\|\mathbf{x}\|_{M_{h}}^{2}=\mathbf{x}^{T} M_{h} \mathbf{x}$, and the condition number is $\kappa=\lambda_{\max }\left(M_{h}\right) / \lambda_{\min }\left(M_{h}\right)$. For the matrix in question, $\kappa \approx 3$, so $(\sqrt{\kappa}-1) /(\sqrt{\kappa}+1)=K \approx 0.268$. To be sure the error is reduced by a factor of τ, then

$$
2 K^{k}<\tau \quad \Rightarrow \quad k>\frac{\log (\tau / 2)}{\log (K)}
$$

To take some examples:

$$
\begin{array}{l|cccc}
\tau & 10^{-2} & 10^{-4} & 10^{-6} & 10^{-8} \\
\hline k_{\min } & 5 & 8 & 12 & 15
\end{array}
$$

4. The eigenfunctions $u_{j}(x)$ are orthogonal on the inner product (\cdot, \cdot). So

$$
v \in V_{h} \quad \Rightarrow \quad v=\sum_{j=1}^{N} \alpha_{j} u_{j}
$$

and

$$
a(v, v)=\sum_{j=1}^{N} \lambda_{j} \alpha_{j}^{2}\left\|u_{j}\right\|_{2}^{2} \geq \lambda_{\min } \sum_{j=1}^{N} \alpha_{j}^{2}\left\|u_{j}\right\|_{2}^{2}=\lambda_{\min }(v, v)
$$

Similar arguments can be used to prove that $a(v, v) \leq \lambda_{\max }(v, v)$.
5. The finite difference approximation becomes

$$
\frac{1}{h^{2}}\left(u_{i-1, j}+2 u_{i, j}-u_{i+1, j}\right)=\lambda_{j} u_{i, j}, \quad u_{0, j}=u_{N+1, j}=0
$$

with $h=1 /(N+1)$. Which is satisfied for

$$
u_{i, j}=\sin (\pi j i h), \quad \lambda_{j}=\frac{1}{h^{2}}(1-\cos (\pi j h)) \approx \pi^{2} j^{2}-\frac{1}{12} \pi^{4} j^{4} h^{2}+\cdots
$$

And $\frac{1}{h^{2}}(1-\cos (\pi j h))<\pi^{2} j^{2}$ for $j=1,2, \cdots, N$ since $2(1-\cos (x))-x^{2}<0$ for all $x \in(0, \pi)$.
6. Let us start with (28): The element i of the eigenvector $\mathbf{u}_{h, j}$ corresponding to the eigenvalue λ_{j} is given as

$$
\left(u_{h, i}\right)_{j}=\sin (\pi j(i h))
$$

which satisfies $A_{h} \mathbf{u}_{h, j}=\lambda_{j} \mathbf{u}_{h, j}$, or

$$
\begin{equation*}
\frac{1}{h}\left(-\left(u_{h, i-1}\right)_{j}+2\left(u_{h, i}\right)_{j}-\left(u_{h, i+1}\right)_{j}\right)=\lambda_{j}\left(u_{h, i}\right)_{j} \tag{1}
\end{equation*}
$$

which becomes

$$
\frac{1}{h}\left(-\sin \left(\pi j(i-1) h+2 \sin (\pi j i h)-\sin (\pi j(i+1) h)=\lambda_{j} \sin (\pi i j h)\right.\right.
$$

Using (see the footnote)

$$
\sin (\pi j(i-1) h)+\sin (\pi j(i+1) h)=2 \sin (\pi i j h) \cos (\pi j h)
$$

we prove that (1) is satisfied with $\lambda_{j}=2(1-\cos (\pi j h))$ for $j=1,2, \cdots, N$.

