Norwegian University of Science and Technology
Department of Mathematical
Sciences

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods Fall 2012

Exercise set 6

1 The conjugate gradient (CG) algorithm for solving

$$
A \mathbf{u}=\mathbf{b}
$$

is given by

$$
\begin{aligned}
& \text { Compute } \mathbf{r}_{0}=\mathbf{b}-A \mathbf{u}_{0} . \\
& \text { for } k=0,1,2, \cdots \text { do } \\
& \alpha_{k}=\frac{\mathbf{r}_{k}^{T} \mathbf{r}_{k}}{\mathbf{p}_{k}^{T} A \mathbf{p}_{k}} \\
& \mathbf{u}_{k+1}=\mathbf{u}_{k}+\alpha_{k} \mathbf{p}_{k} \\
& \mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha_{k} A \mathbf{p}_{k} \\
& \beta_{k}=\frac{\mathbf{r}_{k+1}^{T} \mathbf{r}_{k+1}}{\mathbf{r}_{k}^{T} \mathbf{r}_{k}} \\
& \begin{array}{l}
\mathbf{p}_{k+1}=\mathbf{r}_{k+1}+\beta_{k} \mathbf{p}_{k} \\
\text { end for }
\end{array}
\end{aligned}
$$

In the following, we will assume that A is symmetric, positive definite.
In the lecture, it was proved that $\mathbf{r}_{i}^{T} \mathbf{r}_{j}=0$ and $\mathbf{p}_{i} A \mathbf{p}_{j}=0$ if $i \neq j$.
a) Prove that this algorithm coincide with the algorithm on p. 166 in Quarteroni, with no preconditioner $(P=I)$.
b) If A is symmetric positive definite, prove that so is A^{-1}. Thus A^{-1} can be used to define a norm: $\|\mathbf{y}\|_{A^{-1}}=\sqrt{\mathbf{y}^{T} A^{-1} \mathbf{y}}$ for all $\mathbf{y} \in \mathbb{R}^{N}$.
c) From the derivation of the CG algorithm, we know that at each iteration, the method minimizes the error in th A-norm over all elements in $K^{m}\left(A ; \mathbf{r}_{0}\right)$. Prove that, at each iteration, CG minimizes the residual in the A^{-1} norm.
d) Assume that the initial residual can be expressed as a sum of m eigenvectors of A, with $m \leq N$. Show that CG converges in m iterations in this case.

2 Consider the diffusion-transport problem:

$$
\begin{aligned}
-\mu u_{x x}+b u_{x} & =f, \quad \text { in } \quad \Omega=(0, L) \\
u(0) & =0 \\
u(L) & =1
\end{aligned}
$$

where μ and b are given constants, and $\mu>0$.
a) Find the weak formulation of the problem.
b) Set up the Galerkin approximation, using a space $V_{h}=\operatorname{span}\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}\right\}$.
c) Let $V_{h}=X_{h}^{1}$. Set up the elemental matrix A^{K} for this problem.
d) Assume a uniform grid ($h=L / M$ is constant). Set up the global linear system to be solved in this case.
e) Let $L=20, \mu=0.04$ and $b=2$. How small do you have to make the stepsize h to avoid oscillations in the numerical solution? How many elements would you need?
f) Confirm the results of e) numerically (MATLAB file enclosed).
g) How can you avoid the oscillations, while still using a solution based on finite element methods. Again, confirm your results numerically.
h) Explain the idea of the Gummel-Scharfetter scheme (bottom half of page 285). In particular, explain why the use of this scheme will solve the diffusion-transport equation exactly if the source term $f=0$. Confirm your results numerically.
i) Assume that you would rather use a variable stepsize scheme. Describe a typical row in the global linear system of equations.

