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Exercise set 6

1 The conjugate gradient (CG) algorithm for solving

Au = b

is given by

Compute r0 = b−Au0, p0 = r0.
1: for k = 0, 1, 2, · · · do

2: αk =
rTk rk

pT
kApk

3: uk+1 = uk + αkpk

4: rk+1 = rk − αkApk

5: βk =
rTk+1rk+1

rTk rk
6: pk+1 = rk+1 + βkpk

7: end for

In the following, we will assume that A is symmetric, positive definite.

In the lecture, it was proved that rTi rj = 0 and piApj = 0 if i 6= j.

a) Prove that this algorithm coincide with the algorithm on p. 166 in Quarteroni,
with no preconditioner (P = I).

Solution: There is an error in the CG algorithm in Q: βk has the wrong sign. There
were a few errors in the algorithm in the exercise as well, but they should have been
corrected in this version.
The only differences between the two algorithms is how βk and αk is computed. For
αk, we have

pT
k rk = (rk + βkpk−1)T rk = rTk r

T
k

since pT
k−1rk = 0. For βk use

pT
kArk+1 =

1

αk
(rk − rk+1)T rk+1 = − 1

αk
rTk+1rk+1.

and
pT
kApk =

1

αk
pT
k (rk − rk+1) =

1

αk
rTk rk.

b) If A is symmetric positive definite, prove that so is A−1. Thus A−1 can be used
to define a norm: ‖y‖A−1 =

√
yTA−1y for all y ∈ RN .
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Solution: Choose some arbitrary y 6= 0. Let x = A−1y (which do exist, since A is
SPD and then invertible). But then

yTA−1y = (Ax)TA−1Ax = xTAx > 0.

So, A−1 is SPD.

c) From the derivation of the CG algorithm, we know that at each iteration, the
method minimizes the error in th A-norm over all elements inKm(A; r0). Prove
that, at each iteration, CG minimizes the residual in the A−1 norm.
Solution: Let u be the exact solution to Au = b. Then

u− um = A−1(b−Aum) = A−1rm.

And
‖u− um‖2A = (u− um)TA(u− um) = rmA

−1rm = ‖r0‖2A−1 .

d) Assume that the initial residual can be expressed as a sum of m eigenvectors of
A, with m ≤ N . Show that CG converges in m iterations in this case.
Solution: The Krylov space is given by

Kk(A; r0) = span{r0, Ar0, . . . , Ak−1r0}. (1)

This is supposed to create a subspace of dimension k, and the CG algorithm is essen-
tial a smart implementation of the Gram-Schmidt process to find an orthogonal basis,
{r0, r1, . . . rk−1} of Kk(A; r0). However, if r0 =

∑m
i=1 γivi, where the vi‘s are m of

the eigenvectors of A, then

Ar0 =

m∑
i=1

γiλivi, A2r0 =

m∑
i=1

γiλ
2
ivi, etc.

So Kk(A, r0) ⊆ Vm = span{v1,v2, . . .vm}, for all k ≤ N . After m iterations there
are no new directions to be found, Km = Vm, rm = 0 and the exact solution has been
found.

November 23, 2012 Page 2 of 3



Exercise set 6

2 Consider the diffusion-transport problem:

−µuxx + bux = f, in Ω = (0, L)

u(0) = 0

u(L) = 1

where µ and b are given constants, and µ > 0.

a) Find the weak formulation of the problem.

b) Set up the Galerkin approximation, using a space Vh = span{ϕ1, ϕ2, . . . , ϕN}.

c) Let Vh = X1
h. Set up the elemental matrix AK for this problem.

d) Assume a uniform grid (h = L/M is constant). Set up the global linear system
to be solved in this case.

e) Let L = 20, µ = 0.04 and b = 2. How small do you have to make the stepsize h
to avoid oscillations in the numerical solution? How many elements would you
need?

f) Confirm the results of e) numerically (MATLAB file enclosed).

g) How can you avoid the oscillations, while still using a solution based on finite
element methods. Again, confirm your results numerically.

h) Explain the idea of the Gummel-Scharfetter scheme (bottom half of page 285).
In particular, explain why the use of this scheme will solve the diffusion-transport
equation exactly if the source term f = 0.
Confirm your results numerically.

i) Assume that you would rather use a variable stepsize scheme. Describe a typical
row in the global linear system of equations.
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