Exercise G, solutions.
a) Multiply by a test function N, and use partial integration on the first term:

$$
\mu \int_{0}^{1} u_{x} v_{x} d x-\int_{0}^{1} u_{x} v+b \int_{0}^{1} u_{x} w d x=\int_{0}^{1} f w d x
$$

For the integrals to exist, Werequire u, ne $H^{1}(\Omega)$ and $f \in L^{2}(\Omega)$. Further, the second term is zero if $\operatorname{rr}(0)=\sim(L)=0$, that is $w \in H_{0}^{\prime}(\Omega)$. So we get

Fince $u \in H^{7}(\Omega), u(0)=0, u(L)=ん$, s.t.

$$
u \int_{0}^{L} u_{x} v_{x} d x+b \int_{0}^{L} u_{x} v d x=\int_{0}^{L} f \cdot v d x, \quad v \in H_{0}^{1}(\Omega) \text {. }
$$

To make the trial ane test space the same, let

$$
u=u^{0}+R_{g} \text {, where } \quad R_{g}(0)=0, R_{g}(L)=1
$$

fore some chosen lifting function Ry. The weak formulation becomes

Final $\dot{u}_{0} \in H_{0}^{1}(\Omega)$ sit. $a(u, v)=F(v) \quad \forall w \in H_{0}^{1}(\Omega)$.
with

$$
\begin{aligned}
& a(u, v)=\mu \int_{0}^{L} u_{x} v_{x} d x+b \int_{0}^{L} u_{x} v d x \\
& F(v)=\int_{0}^{L} f \cdot v d x-\mu \int_{0}^{L} R_{g_{0}, x} v_{x} d x-b \int_{0}^{L} R_{g_{i}, x} v d x
\end{aligned}
$$

Notice the lack of symmetry in this case, $a(u, v) \neq a(v, u)$.
b) The Galerkin approximation is given by:

Fince $i_{n} \in V_{n}$ st. $\quad a\left(u_{n}, \varphi_{i}\right)=F\left(\varphi_{i}\right), \quad i=1, \cdots, N$.
Let $\dot{u}_{n}=\sum_{j=1}^{N} u_{j} \varphi_{j}$. Using the bi-linearity of a, this is
Fine $u \in \mathbb{R}^{N}$ s.t. $\quad \sum_{j=1}^{N} a\left(\varphi_{j}, \varphi_{i}\right)=F\left(\varphi_{i}\right), i=1, \cdots, N$ or simply

$$
A_{h \underline{u}}=f
$$

Where

$$
\begin{aligned}
& \left(A_{h}\right)_{i j}=\mu \int_{0}^{L} \frac{\partial \varphi_{i}}{\partial x} \frac{\partial \varphi_{j}}{\partial x} d x+b \int_{0}^{L} \frac{\partial \varphi_{j}}{\partial x} \cdot \varphi_{i} d x \\
& f_{i}=\int_{0}^{L} f \cdot \varphi_{i} d x-\mu \int_{0}^{L} \frac{\partial R_{i}}{\partial x} \frac{\partial \varphi_{i}}{\partial x} d x-b \int_{0}^{L} \frac{\partial R_{g}}{\partial x} \varphi_{i} d x
\end{aligned}
$$

Ance the solution is:

$$
u_{h}=u_{h}+R_{g}=\sum_{j=1}^{N} u_{j} \varphi_{j}+R_{g}
$$

C)

Reference element \hat{K}

$$
\begin{aligned}
& \psi_{0}=1-\xi \\
& \psi_{1}=\xi
\end{aligned}
$$

Mapping $\hat{K} \Leftrightarrow K: \quad x(\xi)=x_{0}^{k}+h_{k} \xi$

$$
\xi(x)=\frac{x-x_{0}^{k}}{h_{k}}
$$

So, element (α, β) of $A^{k}, \alpha, \beta=0,1$ is

$$
\begin{aligned}
A_{\alpha, \beta}^{k} & =\int_{k} a\left(\varphi_{\alpha}, \varphi_{\beta}\right) d x \\
& =\mu \int_{0}^{L} \frac{\partial \varphi_{\alpha}}{\partial x} \frac{\partial \varphi_{\beta}}{\partial x} d x+b \int_{0}^{L} \frac{\partial \varphi_{\beta}}{\partial x} \varphi_{\alpha} d x \\
& =\frac{\mu}{h_{k}} \int_{0}^{1} \frac{\partial \psi_{\alpha}}{\partial \xi} \frac{\partial \psi_{\beta}}{\partial \xi} d \xi+b \int_{0}^{1} \frac{\partial \psi_{\beta}}{\partial \beta} \psi_{\alpha} d \xi
\end{aligned}
$$

$$
\begin{aligned}
& A_{00}^{k}=\frac{\mu}{h_{k}} \int_{0}^{1} 1 \cdot 1 d x_{j}+b \int_{0}^{1}(-1) \cdot(1-\xi) d \xi=\frac{\mu}{h_{k}}-\frac{b}{2} \\
& A_{01}^{k}=\frac{\mu}{h_{k}} \int_{0}^{1} 1 \cdot(-1) d{ }_{0}, b \int_{0}^{1} 1 \cdot(1-\xi) d \xi=-\frac{\mu}{h_{k}}+\frac{b}{2} \\
& A_{10}^{k}=\frac{\mu}{h_{k}} \int_{0}^{1}(-1) / d \xi+b \int_{0}^{1}(-1) \xi d \xi=-\frac{\mu}{h_{k}}-\frac{b}{2} \\
& A_{11}^{k}=\frac{\mu}{h_{k}} \int_{0}^{1}(-1)(-1) d \xi+b \int_{0}^{1} 1 \cdot \xi d \xi=\frac{\mu}{h_{k}}+\frac{b}{2}
\end{aligned}
$$

So, the element matrix becomes

$$
A^{k}=\mu_{n}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]+\frac{b}{2}\left[\begin{array}{cc}
-1 & 1 \\
-1 & 1
\end{array}\right]
$$

d) First, we need the mappirey from the Local to the global grid, with in this case simply is

$$
i=\theta(\alpha, K)=K-1+\infty, \quad k=1,2, \cdots, M-1, \quad \alpha=0,1
$$

sech that, for each $x_{i}=i h$, we have a basisfunction satisfying

$$
\varphi_{i}\left(x_{j}\right)=\delta_{i j},\left.\quad \operatorname{arch} \quad \varphi_{i}\right|_{k}=\varphi_{\theta(\alpha, k)}
$$

The extencece matrix \tilde{A}_{n}, which includes the bounday functions, becomes

$$
\begin{aligned}
& \tilde{A}=\frac{\mu}{h}\left[\begin{array}{rrrrr}
1 & -1 & & & \\
-1 & (1+1) & -1 & & \\
& -1 & (1,+1) & --1 & \\
& & -1 & \ddots & \ddots
\end{array}\right] \\
& +\frac{b}{2}\left[\begin{array}{cccccc}
-1 & 1 & & & & \\
-1 & (1-1) & 1 & & & \\
& -1 & (1-1) & 1 & & \\
& & & & & \\
& & & & \ddots & (1-1) \\
& & & & & -1 \\
& & & & & 1
\end{array}\right] \\
& h \frac{\mu}{h}\left[\begin{array}{llll}
1 & 1 & & \\
1 & 2 & \ddots & 0 \\
\ddots & \ddots & \\
0 & \ddots & 2 & 1 \\
1 & 1
\end{array}\right]+\frac{b}{2}\left[\begin{array}{rrrr}
-1 & 1 & & \\
-1 & 0 & \ddots & 0 \\
& \ddots & \ddots & \\
0 & \ddots & 0 & 1 \\
& & & -1
\end{array}\right]
\end{aligned}
$$

In the derivation of the weave formulation, we could choose the lifting function $R_{g} E^{\prime} H^{\prime}(\Omega)$, as long as it satisfies the boundary conditions. Now we choose

$$
R_{g}=u_{r}(0) \varphi_{0}+u(<) \varphi_{r}, \text { suchethat }
$$

ance $u_{n}=\sum_{i=0}^{m} u_{i} \varphi_{i}$, with $u_{0}=u(0)$ once $u_{r}=u(L)$, The numerical solution satisfies

$$
\tilde{A} \tilde{u}=\tilde{f} \quad, \quad \tilde{u}=\left[\begin{array}{l}
u_{0} \\
\frac{u}{u_{H}}
\end{array}\right]
$$

ance $f_{i}=\int_{0}^{L} f_{i} \cdot e x, i=0, \cdots, m$.
Since $u_{0}=0$ and $u_{m}=1$, we can remove the first an a last row of the system, and move the first and last column to the res. Thus the global system is:

$$
\left(\mu A_{a}+b A_{t}\right) \underline{u}=\underline{f}+\underline{b}
$$

Where

$$
\begin{aligned}
& A_{d}=\operatorname{tridiag}\{-1,2,-1\} \cdot 1 / n \\
& \hat{A}_{t}=\operatorname{tridiag}\{-1,0,1\} \cdot 1 / 2 \\
& \underline{b}=(0, \ldots, 0, \mu / n-b / 2)^{T} \\
& \underline{f}=\left(f_{1}, \cdots, f_{M-1}\right)^{T}
\end{aligned}
$$

e) Our scheme becomes, using $f=0$, becomes

$$
\cdots \frac{\mu}{h}\left(-u_{i-1}+2 u_{i}-u_{i+1}\right)+\frac{b}{2}\left(-u_{i-1}+u_{i+1}\right)=0
$$

Try the solutions $u_{i}=r^{i}$. Inserting this into the formula above gives

$$
\left(-\frac{\mu}{n}+\frac{b}{2}\right) r^{2}-\frac{2 \mu}{n} r+\left(-\frac{\mu}{n}-\frac{b}{2}\right)=0
$$

Which has solutions

$$
r_{1}=1, \quad r_{2}=\frac{1+\frac{b \hbar}{2 \mu}}{1-\frac{b \lambda}{2 \mu}}
$$

and the total
Solution is

$$
u_{i}=c_{1} r_{1}^{i}+c_{i} r_{2}^{i}
$$

the constants C_{1} ance C_{z}, are given from the boundary conditions. It is clear that oscillations will take place if $r_{2}<0$, that is, when

$$
\left|\frac{b h}{2 \mu}\right|>1 \text { or } h>\frac{2 \mu}{|b|}
$$

Which in our case means

$$
h>\frac{2 \cdot 0.04}{2}=0.04, \text { or } 14<\frac{L}{0.04}=500 .
$$

f) Use artifical diffusion: Solve the modified problem

$$
-\mu\left(1+\varphi_{h}\right) u_{x x}+b u_{x}=f
$$

st.

$$
\frac{1 b / h}{2 \cdot \mu\left(1+\varphi_{h}\right)}<1, \quad \text { f.ex. } \quad \varphi_{h}=\frac{1 b / h}{2 \mu}
$$

Which will lead to the standard upwind scheme.
b) You are not really expected to solve this unless you participated at the lecture 1\%.1. In this note, I will use an alternative approach.

Given

$$
-\mu u_{x x}+b u_{x}=f
$$

Which can be rewritten as

$$
-\mu \psi_{x}=f, \text { with } \quad \psi=u_{x}-\beta u, \quad \beta=b / \mu
$$

With some appropriate boundary conditions, (Dirichlet) The weak formulation for this is

$$
-\mu \int_{\Omega} \psi_{x} v d x=\int_{\Omega} \psi v_{x} d x=\int_{\Omega} f \cdot N d x \quad, \forall v \in H_{0}^{\top}(\Omega)
$$

and the Galerkin approximation becomes
(*)

$$
\begin{aligned}
& +\mu \int_{\Omega} \psi_{h} \frac{\partial \varphi_{i}}{\partial x} d x=\int_{\Omega} f \cdot \varphi_{i} d x \\
& V_{h}=x_{0}^{1}(\Omega), \text { or }
\end{aligned}
$$

Then, on each interval $\left(x_{i}, x_{i+1}\right)$, ψ_{-}is linear, ance on each interval.

Next, approximate... $\psi_{h}=\psi_{i+1 / 2}$ (canst.) on (x_{i}, x_{i+1}) rance solve

$$
v_{x}-\beta v^{2}=\psi_{i+1 / b}, v\left(x_{i}\right)=u_{i}, v\left(x_{i+1}\right)=u_{i+1}
$$

Which gives

$$
\psi_{i+1 / 2}=\beta \frac{e^{\beta n} u_{i}-u_{i+1}}{e^{\beta n}-1}
$$

Inserted into (*) this becomes

$$
\frac{\mu \beta}{h} \cdot \frac{1}{e^{\beta n}-1}\left(e^{\beta n} u_{i-1}-u_{i}-e^{\beta h} u_{i}+u_{i+1}\right)=\int_{x_{i+1}}^{x_{i+1}} f \cdot \varphi_{i} d x
$$

for $i=1,2, \ldots, m-1$.
Since u_{0} arne u_{r} are known, this is decagonal dominant system of equations, with a unique solution.
Ance it can be rewritten into the form

$$
\underline{n}^{\mu}\left(1+\Phi_{n}\right)\left(-u_{i-1}+2 u_{i}-u_{i+1}\right)+\frac{1}{2}\left(-u_{i-1}+u_{i+1}\right)=\int f \cdot \varphi_{i} \cdot d x
$$

With

$$
\phi_{n}=-1+\frac{\beta h}{2}+\frac{\beta h}{e^{\beta n}-1}
$$

It is pretty clear that this is the exact solution for $f=0$.
i) If $h_{k} \neq h_{k+1}$, then a typical row is

$$
\begin{aligned}
& \mu\left(\frac{1}{h_{k}}-\left(-u_{k=1}+u_{k-k}\right)+\frac{1}{n_{k+1}}\left(+u_{k}-u_{k+1}\right)\right) \\
& +\frac{b}{2}\left(\frac{1}{n_{k}}\left(-u_{k-1}+u_{k}\right)+\frac{1}{r_{k+1}}\left(-u_{k}+u_{k+1}\right)\right)=\int_{x_{k-1}}^{x_{k+1}} f p_{k} d x
\end{aligned}
$$

