Norwegian University of Science and Technology
Department of Mathematical

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods
 Fall 2013

Sciences
Project 1

1 Consider the problem

$$
-u_{x x}=1, \quad 0<x<1, \quad u(0)=u(1)=0
$$

a) Derive the exact solution u.
b) Show by explicit calculations that

$$
\int_{0}^{1} u_{x} v_{x} d x=\int_{0}^{1} v d x
$$

for all sufficiently smooth v satisfying $v(0)=v(1)=0$.
c) Compute $J(u)$, where

$$
J(v)=\frac{1}{2} \int_{0}^{1} v_{x}^{2} d x-\int_{0}^{1} v d x
$$

d) Let $w_{1}(x)=a_{1} \sin (\pi x)$. Find the value of the amplitude a_{1} which minimizes $J\left(w_{1}\right)$. How does a_{1} compare with the maximum of the exact solution u ?
e) Show that $J\left(w_{1}\right)>J(u)$. Is there a big difference?
f) Let $\varphi_{i}=\sin ((2 i-1) \pi x), i=1,2,3, \ldots$ These functions are infinitely differentiable, and they all satisfy $\varphi_{i}(0)=\varphi_{i}(1)=0$. Compute

$$
a_{i j}=\int_{0}^{1} \varphi_{j}^{\prime} \varphi_{i}^{\prime} d x \quad \text { and } \quad b_{i}=\int_{0}^{1} \varphi_{i} d x
$$

g) Let $V_{N}=\operatorname{span}\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}\right\}$. Set up and solve the problem

Find $w_{N} \in V_{N}$ such that $\int_{0}^{1} w_{N, x} v_{x} d x=\int_{0}^{1} v d x, \quad \forall v \in V_{N}$.
h) Plot the error $u-w_{N}$ for $N=1,2,3$.

2 Given the weak statement:

$$
\begin{equation*}
\text { Find } u \in V \quad \text { s.t. } \quad a(u, v)=F(v), \quad \forall v \in V \tag{1}
\end{equation*}
$$

and the minimization principle:

$$
\begin{equation*}
u=\arg \min _{u \in V} J(v), \quad \text { with } \quad J(v)=\frac{1}{2} a(v, v)-F(v) . \tag{2}
\end{equation*}
$$

a) Show that (1) and (2) are equivalent whenever a is bilinear, symmetric and positive definite, and F is linear. State clearly which properties you are using in you arguments.
b) Take $V=\mathbb{R}^{n}$, and just show, by appropriate choice of a and F, that the minimizer $u \in V$ of $J(v)=\frac{1}{2} v^{T} G v-v^{T} b$ for any symmetric, positive definite matrix $G \in \mathbb{R}^{n \times n}$ and $v \in \mathbb{R}^{n}$ satisfies $G u=b$.

3 Write a code for solving the equation

$$
-u_{x x}=x^{4}, \quad 0<x<1, \quad u(0)=0, \quad u(1)=0
$$

using the finite element method with equidistant grid ($x_{i}=i h, h=1 / N$), and the basis functions

$$
\varphi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{h}, & \text { for } x_{i-1} \leq x \leq x_{i} \\ \frac{x_{i+1}-x}{h} & \text { for } x_{i} \leq x \leq x_{i+1}, \\ 0 & \text { otherwise }\end{cases}
$$

for $i=0,1,2, \ldots, N$. Compare the numerical solution with the exact solution, and plot the error.

